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Fig. 1: Proofreading Workflow. SynAnno decomposes the workflow into three views: (a) Error Detection: Users review synapse
masks in a grid layout, guided by an interactive 3D neuron viewer. (b) Error Categorization: Identified errors are validated and classified.
(c) Error Correction: Users fix masks using manual or automatic tools and set pre-/postsynaptic markers to define information flow.

Abstract— Connectomics, a subfield of neuroscience, aims to map and analyze synapse-level wiring diagrams of the nervous system.
While recent advances in deep learning have accelerated automated neuron and synapse segmentation, reconstructing accurate
connectomes still demands extensive human proofreading to correct segmentation errors. We present SynAnno, an interactive
tool designed to streamline and enhance the proofreading of synaptic annotations in large-scale connectomics datasets. SynAnno
integrates into existing neuroscience workflows by enabling guided, neuron-centric proofreading. To address the challenges posed by
the complex spatial branching of neurons, it introduces a structured workflow with an optimized traversal path and a 3D mini-map for
tracking progress. In addition, SynAnno incorporates fine-tuned machine learning models to assist with error detection and correction,
reducing the manual burden and increasing proofreading efficiency. We evaluate SynAnno through a user and case study involving
seven neuroscience experts. Results show that SynAnno significantly accelerates synapse proofreading while reducing cognitive load
and annotation errors through structured guidance and visualization support. The source code and interactive demo are available at:
https://github.com/PytorchConnectomics/SynAnno.

Index Terms—Connectomics, Synaptic Annotations, Neuron-Centric, Proofreading Workflow

1 INTRODUCTION

Recent advances in connectomics have enabled the large-scale recon-
struction of neuronal circuits from high-resolution imaging data across
diverse model organisms, including Drosophila [9,27], mouse [38], and
even humans [35]. Deep learning–based methods have significantly ac-
celerated this process by automating neuron segmentation and synapse
detection. However, despite their high accuracy, these automated ap-
proaches still produce errors that necessitate extensive human proof-
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reading [19]. While substantial progress has been made in developing
tools and workflows for proofreading neuron segmentation [10, 11],
comparatively less attention has been given to the validation and cor-
rection of synaptic annotations. This gap poses a critical challenge, as
errors in synapse labeling can misrepresent circuit connectivity and
lead to flawed functional interpretations. As a result, high-quality
neuron-centric proofreading of synaptic annotations remains essential
for producing reliable and interpretable connectomic data.

Neuron-centric proofreading of synaptic annotations is inherently
challenging due to the complex branching of neuronal arbors and the
sheer volume of synaptic connections in large-scale datasets. For
instance, the H01 connectome [35] reconstructs one cubic millimeter of
human brain tissue at nanoscale resolution, containing over 57 thousand
cells and 150 million synapses—yet only a small subset of its neurons
has been fully proofread. Traditional proofreading methods typically
rely on manual inspection via 3D visualization tools, a process that is
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Fig. 2: Neuron-Centric Synapse Proofreading. (a) The user selects a specific neuron from the dataset, (b) whose skeleton is compartmentalized
and rendered. (c) The goal is to proofread all synapses associated with the selected neuron (loaded as yellow dots).

time-consuming, cognitively taxing, and susceptible to inconsistencies.
These challenges underscore the need for interactive tools that can
streamline synapse proofreading while preserving both accuracy and
scalability.

We present SynAnno, an interactive tool to facilitate guided proof-
reading of synaptic annotations in large-scale connectome datasets.
SynAnno integrates structured workflows with machine learning-
assisted error correction, enabling neuroscientists to review and refine
AI-generated synapse masks systematically. The system provides a
neuron-centric approach to proofreading, allowing users to traverse
synapses associated with each neuron compartment in a structured
manner (Fig. 2). To enhance efficiency, SynAnno introduces depth-first
search (DFS)-based pathfinding for systematic traversal, an abstraction
pyramid for multi-scale visualization, and an interactive error-labeling
interface. Additionally, machine learning models assist in identifying
and correcting synapse mask errors, reducing the overall proofread-
ing burden. We evaluate SynAnno in user- and case studies with 7
domain experts. We find that our structured proofreading workflow,
combined with machine learning-assisted corrections, lead to signif-
icant improvements in proofreading speed and accuracy. We further
discuss the usability insights gained from neuroscience domain experts
and highlight opportunities for future improvements. In summary, our
contributions include: (1) We contribute a guided synapse proofread-
ing workflow. This structured approach allows the effective review of
synaptic annotations and incorporates neuron-centric navigation strate-
gies that suggest an optimal proofreading trajectory for each neuron. (2)
We propose a hierarchical visual interface for error identification and
correction. The user first quickly screens groups of synaptic annotations
for errors and then further refines the annotations if incorrectly labeled
synapses in a separate view. (3) We provide an interactive machine
learning-assisted error correction approach. SynAnno integrates a deep
learning model for interactive synapse mask refinement, improving
proofreading efficiency. (4) We empirically evaluate SynAnno in a
user study with 7 neuroscience and proofreading experts, assessing the
effectiveness of SynAnno in real-world proofreading tasks.

2 RELATED WORK

Connectomics and Synapse Analysis. Connectomics seeks to map
the complete neural wiring of organisms by identifying neurons and
their synaptic connections at synapse-level resolution. A key chal-
lenge in connectomics is analyzing the vast number of synapses within
dense neural circuits, requiring both structural and functional insights.
Synapse analysis encompasses multiple research objectives, including
morphology [12, 28], connectivity mapping [9], synaptic classifica-
tion [13], and synapse density analysis [21], each providing insights
into neural plasticity and computational properties [26]. Despite ad-
vances in automated synapse detection methods [7, 29], challenges
remain in ensuring error detection accuracy, identifying false negatives,
and correcting erroneous synapse masks and information flow (Fig. 3).
Addressing these issues is critical for generating high-fidelity neural
circuits supporting research on cognition and neurological disorders.
Interactive Proofreading for Connectomics. Interactive proofread-
ing tools are vital for correcting errors in automated neuron and synapse
segmentations. NeuroBlocks [1] introduced a modular interface for
visualizing and editing neural circuits, enabling experts to interactively

Fig. 3: Synaptic Annotation Error Taxonomy. False positives may arise
from incorrect detection, information flow assignment, or segmentation
masks, each requiring a different correction strategy. False negatives are
more challenging, often requiring exhaustive review across all neuron
compartments, making them particularly time-consuming to identify.

refine segmentations. FlyWire [10] and NeuTu [42] expanded on this
by supporting large-scale, collaborative proofreading of dense con-
nectomic datasets. To improve user efficiency, Haehn et al. [16, 17]
proposed guided workflows that direct attention to likely segmentation
errors while minimizing cognitive load. Later work addressed the scala-
bility of these systems for increasingly large and complex datasets [15].
In parallel, tools like VAST [2], VICE [14], and Raveler [8] have com-
bined manual and semi-automatic correction with machine learning
support, allowing users to iteratively refine annotations. Our work
builds on these foundations by introducing a structured, neuron-centric
proofreading workflow tailored to synaptic annotations, supporting
guided traversal, error categorization, and ML-assisted correction.
Synaptic Annotation and Focused Proofreading. Synapse anno-
tation at scale remains a major challenge in connectomics. Plaza et
al. [32] introduced scalable methods for synapse labeling, while fo-
cused proofreading [30] prioritized regions with a high likelihood of
annotation errors to improve efficiency. Lin et al. [22] proposed an
active learning framework that identifies informative synapse instances
for manual review, thereby improving model performance with minimal
human effort. Additionally, neuPrint [31] provides an accessible plat-
form for querying and analyzing synaptic connectivity. Together, these
efforts emphasize the need for efficient, targeted proofreading strategies
to reduce the manual burden of validating automated annotations.
Automatic Segmentation Error Correction. Connectomics has seen
a range of approaches for addressing segmentation errors, particularly
split and merge mistakes in neuron reconstructions. Zung et al. [43]
trained multiscale 3D convolutional networks to detect and correct
such errors, while graph-based models [25] represent neurons as an-
notated graphs to support structured proofreading. Shape completion
techniques, including point cloud models [3] and VAEs [37], learn
shape priors to recover fragmented segments. Building on these efforts,
our method incorporates a 3D U-Net–based synapse segmentation re-
finement directly into the proofreading workflow, reducing reliance on
manual correction and improving efficiency.
Visualization for Connectomics. Effective visualization is critical
for analyzing large-scale connectomics datasets, enabling researchers
to navigate and interpret complex neuronal structures [6, 39, 40]. Tradi-
tional tools like Neuroglancer [24] provide interactive 3D environments



Fig. 4: Illustration of a Synaptic Structure. A presynaptic neuron
(purple) connects to a postsynaptic neuron (blue) via an axon terminating
in a synaptic cleft. The postsynaptic neuron features a dendritic spine
that receives the signal. The inset shows an electron microscopy (EM)
image with segmented synaptic cleft (magenta), presynaptic marker
(green), and postsynaptic marker (blue).

that facilitate the exploration of dense neural reconstructions, yet they
can lead to occlusion and cognitive overload. Abstraction-based meth-
ods, such as NeuroLines [5], simplify connectivity representations
using intuitive metaphors, while ConnectomeExplorer [4] integrates
query-based analysis with multi-scale visualization to support com-
prehensive data exploration. Our approach extends these visualization
techniques by incorporating a hierarchical proofreading interface that
allows seamless transitions between 2D, quasi-3D, and full 3D views,
optimizing the balance between overview and detailed inspection.

3 NEUROSCIENCE FUNDAMENTALS

Neurons and Synapses. Neurons are the fundamental building blocks
of the nervous system and are responsible for transmitting electrical
and chemical signals across the brain. Each neuron consists of a cell
body (soma), from which dendrites extend, which receive signals, and
an axon, which transmits signals to other neurons (Fig. 4). Neurons
communicate via synapses, specialized junctions where chemical or
electrical signals are transmitted between cells. At the synapse, the
presynaptic neuron releases neurotransmitters from vesicles into the
synaptic cleft, where they bind to receptors on the postsynaptic neuron.
This process allows information to flow directionally through neural
circuits. Synaptic polarity, which determines whether a synapse is
excitatory or inhibitory, is crucial in shaping neuronal computations.
Inhibitory synapses decrease the likelihood of an action potential, while
excitatory synapses increase the likelihood of an action potential.
Information Flow. The spatial arrangement of synapses is critical for
understanding how information flows within neural networks. Synapses
are often clustered in specific regions of a neuron, forming functional
units known as synaptic boutons on axons and dendritic spines on
dendrites. The placement of these synaptic connections determines
signal integration and network dynamics. Notably, patterns of informa-
tion flow can vary across species—for example, connections are often
one-to-one in mammals, whereas in Drosophila, a single synapse may
transmit to multiple postsynaptic targets.
Connectomics Data. Studying neural circuits at the level of indi-
vidual synapses relies on high-resolution imaging datasets such as the
H01 human brain data [35], which captures over 183 million synapses
in a cubic millimeter of tissue. Connectome reconstructions provide
unprecedented insights into how neurons are wired together to perform
computations. However, despite advances in automated segmentation,
errors in synaptic annotations persist. These errors can cause misrepre-
senting connectivity patterns, necessitating extensive proofreading.

4 GOAL & TASK ANALYSIS

The development of SynAnno was guided by close collaboration with
neuroscience experts who emphasized the need for a more structured,

scalable, and efficient approach to proofreading synaptic annotations
and information flow. While recent advances in automated segmenta-
tion and classification have significantly accelerated the reconstruction
of large-scale connectomic datasets, the task of verifying and correcting
AI-generated synapse masks remains largely manual and cognitively
demanding. Neuroscientists require a proofreading workflow that not
only systematically guides them through the dataset but also preserves
a clear overview of neuron morphology and proofreading progress.
At the same time, they need precise control over corrections and the
ability to incorporate machine learning-assisted suggestions without
compromising accuracy or interpretability. Following a design study
methodology, we conducted semi-structured interviews with experts
in synaptic annotation and connectomics from institutions working on
Drosophila, mouse, and human cortical datasets. These engagements
were complemented by feedback gathered at connectomics workshops
and conferences, providing insight into domain-specific challenges
and common workflow bottlenecks. This formative process led to the
articulation of core domain goals, actionable design requirements, and
concrete tasks, which informed the development of SynAnno.

4.1 Domain Goals
The primary goal of proofreading synaptic annotations in large-scale
connectomics datasets is to ensure that reconstructed neural circuits
are functionally meaningful, structurally accurate, and biologically in-
terpretable. Given the scale and complexity of current EM datasets,
even small annotation errors can propagate into large-scale misinter-
pretations of connectivity and circuit function. In collaboration with
neuroscience experts, we identified five core scientific objectives that
define the priorities and challenges of synapse proofreading:
G1 – Ensure Synaptic Validity. Automatically predicted synapses
may include false positives due to imaging artifacts, ambiguous mor-
phology, or segmentation errors. A critical goal is to validate that
each annotated synapse represents a true biological connection by con-
firming the presence of structural indicators (e.g., vesicles, clefts, and
membrane specializations). Removing invalid predictions helps prevent
spurious connections in downstream connectivity analyses.
G2 – Increase Synapse Recall. False negatives—real synapses
missed by automated models—are common, especially for small or
morphologically atypical contacts. Recovering these missing instances
is essential for maintaining the completeness of the reconstructed con-
nectome. Since undetected synapses often occur in complex or low-
contrast regions, targeted tools and workflows are needed to assist in
their discovery.
G3 – Guarantee Functional Accuracy. Correctly assigning the
directionality and polarity of synapses is key for interpreting how
information flows through a neural circuit. Misannotations—such as
incorrect pre/post-synaptic assignments—can alter the inferred function
of a pathway. Proofreading must ensure that synapse annotations reflect
biologically plausible connectivity, based on both structure and context
within the neuron.
G4 – Improve Synapse Mask Quality. Segmentation masks must
precisely delineate the extent of each synapse to enable accurate quan-
tification and partner identification. Common issues include merged
synapses, fragmented masks, or misaligned boundaries. Improving
mask quality through manual or ML-assisted refinement enhances the
anatomical fidelity of the dataset and supports more reliable down-
stream analysis.
G5 – Support Reproducibility and Interpretability. Annotations
should be consistent and transparent to facilitate collaboration, vali-
dation, and cross-dataset comparisons. Clear workflows, structured
annotation processes, and visual traceability ensure that results can
be reproduced and interpreted by other researchers. Supporting repro-
ducibility also enables integration with computational pipelines for
simulation, analysis, and comparative studies.

4.2 Design Requirements
To meet the domain goals, we translated key challenges into action-
able design requirements, addressing scale, structural complexity, and



Fig. 5: SyAnno’s Three Main Views. In the Error Detection view (left), users are guided along neuron sections or by the uncertainty-based ordering
of synapses within a bounding box. (a) Interactive neuron rendering supports orientation and progress tracking. (b) False positive synapses can
be labeled as incorrect. In the Error Categorization view (center), users revisit instances previously marked as "incorrect" or "unsure" and assign
specific error labels, such as (c) "Merged Mask" or (d) reverting the label to "correct." In the Error Correction view (right), users can manually adjust
or auto-generate masks, reassign pre- and postsynaptic markers, and (e,f) add false negatives.

cognitive load in proofreading large connectomics datasets.
R1 – Orientation and Partitioning. Unintuitive partitioning of neu-
ral structures can lead to a loss of spatial and structural context during
large-scale proofreading, impairing annotators’ awareness of their cur-
rent location, connectivity to previously reviewed regions, and the
neuron’s overall morphology. This weakens their mental model and
increases the risk of overlooked sections. The system should therefore
provide intuitive visual cues that maintain spatial continuity and clearly
associate individual synapses with the broader neuronal structure.
R2 - Process Tracking. Poor process tracking can result in redundant
work, overlooked areas, and inefficiencies—especially during collab-
oration or after task interruptions. The system should clearly show
review status—completed, current, and remaining—to support effec-
tive progress tracking, maintain contextual awareness, and simplify
task resumption.
R3 - Pathfinding. Determining a coherent traversal path through
neuronal structures is difficult due to their extensive size and complex
connectivity. Without structured navigation, proofreading risks frag-
mented coverage and difficulties in task delegation. The system should
provide a biologically meaningful, deterministic, and recoverable traver-
sal strategy aligned with neuronal topology to enable systematic and
reliable task management.
R4 - Visual Hierarchy. Synapse evaluation complexity varies signif-
icantly, e.g., due to orientation in anisotropic volumes, synapse size,
and data origin. Many synapses can be rapidly assessed, while others
require detailed inspection. The system should implement a visual
abstraction hierarchy, defaulting to simplified instance views with easy
access to high-resolution details, supporting efficiency and accuracy.
R5 - Task Separation. Proofreading involves a sequence of distinct
subtasks: detecting potential errors, diagnosing their cause, and apply-
ing corrections. Traditional workflows often intermingle these tasks,
forcing annotators to switch context frequently. The system should
adopt a clear separation-of-concerns approach, enabling annotators to
focus on one task at a time and supporting a systematic, efficient, and
cognitively manageable workflow.

4.3 Tasks
Based on the domain goals and design requirements outlined above, we
derived the following key tasks that SynAnno must support:
T1 – Classify predicted synapses as correct, incorrect, or unsure.
Users need to rapidly triage and evaluate large sets of predicted synapse
masks. (G1, G5; R1, R4, R5)
T2 – Label incorrect or uncertain synapses with specific error types.
Users must be able to assign detailed error labels to support downstream
correction and collaborative workflows. (G1, G3, G4, G5; R2, R5)
T3 – Remove predicted synapses that are biologically invalid.
Users should have the ability to identify and delete synaptic annotations
that do not correspond to real connections. (G1, G2; R2, R3)
T4 – Correct the information flow direction for valid synapses.

Enable users to reassign pre- and post-synaptic labels to ensure accurate
representation of information flow. (G3; R4, R5)
T5 – Refine or redraw synapse masks of erroneous synapses. For
poorly segmented instances or false negatives, users need the ability to
manually adjust or redraw masks to ensure anatomical accuracy. (G4;
R3, R4, R5)
T6 – Discover, add, and annotate missing synapses to the dataset.
Users must be able to identify false negatives and create new annota-
tions, including synapse masks and information flow directions. (G2,
G3, G4; R1, R2, R3)

5 NEURON-CENTRIC PROOFREADING WORKFLOWS

Overview. Users start by browsing a connectome data set via a Neu-
roglancer [23] instance to inspect and select a neuron of interest for
proofreading. Upon selecting a particular neuron, SynAnno precom-
putes synapse metadata, downloads the neuron skeleton, and partitions
it into anatomical compartments by generating a depth-first traversal
path originating from the soma. Finally, SynAnno maps predicted
synapses to their respective locations. SynAnno displays the 3D neuron
structure and related synapses in an embedded 3D skeleton viewer [41]
(Fig. 5a). Each compartment is color-coded and accessible via a com-
partment legend (Fig. 1, right). Users initiate proofreading by following
the traversal order or directly selecting specific compartments. Upon
selection, the interface focuses on the corresponding compartment and
loads the first page of synapses associated with it (Fig. 5, left). Next,
users can engage in both the synapse mask correction workflow and the
false negative correction workflow.

5.1 Synapse Mask Correction Workflow
The synapse mask correction workflow is illustrated in Fig. 6. It be-
gins in the Error Detection view (Fig. 5, left), where users review
synapse masks and information flow markers, labeling erroneous in-
stances as incorrect or unsure (Fig. 6a). If confirmation is needed,
users may inspect the instance in greater context using one of three
options: an enlarged instance modal view, quasi-3D functionality that
enables scrolling through adjacent slices, or a linked Neuroglancer view
that directly centers on the synapse mask (Fig. 6b). These optional
views assist in resolving ambiguous cases. Selected instances can be
further categorized in the Error Categorization view (Fig. 5, center),
where users assign predefined error labels or define custom categories
(Fig. 6c). Subsequently, users may download the labeled data or pro-
ceed to the Error Correction view (Fig. 5, right) to correct the synapse
mask and adjust the information flow markers (Fig. 6d).

5.2 False Negative Correction Workflow
False negative synaptic annotations are systematically corrected within
the compartment-based proofreading process. Once a particular neuron
section has been fully reviewed for false positives in the Error Detec-
tion view, users are prompted to inspect the respective neuron section
for missing synapses. Explorating neuron sections is supported via



Fig. 6: Synapse Mask Correction Workflow. (a) The user reviews a neuron section in the Error Detection view, guided by the neuron rendering,
and identifies a synapse instance they believe is incorrect, marking it accordingly. (b) Optionally, they inspect the instance in Neuroglancer to confirm
their suspicion. (c) After completing the review, they assign the label "Poorly Aligned Mask" in the Error Categorization view. (d) Finally, they correct
the mask and information flow direction markers in the Error Correction view.

Neuroglancer, which displays the neuron skeleton and the microscopy
imaging context (Fig. 7a). After identifying a candidate synapse, users
place a marker at the suspected location. SynAnno then automatically
derives a bounding box, which users may adjust before confirming the
selection (Fig. 7b). Upon confirmation, the instance is cropped and
added to the tile view (Fig. 7c). Each newly added instance is auto-
matically labeled as a false negative (Fig. 7d), eliminating the need for
manual categorization. The proofreading process concludes in the Er-
ror Correction view (Fig. 5, right). SynAnno supports semi-automated
segmentation using a 3D U-Net (Sec. 7), with optional manual refine-
ment if the automated result is unsatisfactory (Fig. 7e). Additionally,
users can place the presynaptic and postsynaptic markers to indicate
the direction of information flow (Fig. 7f), completing the annotation.

In addition to the neuron-centric proofreading workflow, SynAnno
supports a volume-centric proofreading strategy in which users define
a bounding box to load and review synapses within a specific region,
supporting exploratory review or targeted validation.

6 USER INTERFACE & INTERACTIONS

SynAnno provides an interactive interface to perform fine-grained
synaptic proofreading while maintaining spatial awareness of complex
neuronal morphology. The interface supports efficient error detec-
tion, clear task separation, and contextualized navigation through large
neural datasets. It is organized into three coordinated views: Error
Detection, Error Categorization, and Error Correction (Fig. 5). These
views integrate a 2D tile-based instance view (Fig. 5b), a 3D slice
viewer, a full 3D Neuroglancer integration (Fig. 8), and an interactive
3D skeleton viewer (Fig. 5a), to build a visual hierarchy (R4) and
preserve spatial orientation (R1).

6.1 Error Detection View
The Error Detection view (Fig. 5a-b) addresses the need for scalable
triage of predicted synapses (G1, G5) by displaying a grid of instances
from the selected neuron compartment or bounding box. Users review
each instance and classify it as correct, incorrect, or unsure, enabling
rapid error detection (T1). To minimize manual burden, unlabeled
tiles default to the correct state when progressing to the next page—
streamlining labeling in high-quality regions (R5).
3D Skeleton View. To support spatial orientation and reasoning,
SynAnno features a fully interactive 3D skeleton viewer (Fig. 5a). It
enables users to rotate, zoom, and pan the currently selected neuron to
explore its global morphology and detailed local structure. Synapses are
visualized as spheres mapped onto the skeleton, with their error labels
(correct, incorrect, or unsure) encoded through color, size, and opacity.
These spatially contextualized visual cues provide real-time feedback,
supporting functional accuracy (G3) and structural completeness (G2).
Branch Management. To enable consistent traversal of complex neu-
ron morphologies, SynAnno partitions neurons into multiple compart-
ments, structuring them in a biologically meaningful depth-first order
beginning at the soma (Section 8). This ordering defines a deterministic

path, which is visually communicated through compartment-specific
colors on the neuron and a legend (R3). Users are prompted to follow
this path in the Error Detection view. Still, they can also override it
through direct interaction with the legend, which enables navigation
between sections (Fig. 1, right). Inactive compartments are grayed out,
balancing local focus with global context (R1, R2).
Visual Synchronization. The 3D skeleton view is tightly integrated
with the Error Detection view, forming a dynamic, bidirectional connec-
tion between spatial and semantic information. Updates made during
proofreading are reflected immediately—for example, through a change
in the color of a newly annotated synapse—reinforcing a coherent men-
tal model of progress (G5; R2). Synapses currently under review are
visually emphasized—enlarged and fully opaque—while others are
rendered semi-transparent or downscaled, depending on their review
state. This coordination ensures that users remain oriented and supports
structured annotation coverage across views.
Progress Tracking. While visual synchronization and branch man-
agement provide direct feedback on progress, the viewer also features
a global progress bar at the bottom (Fig. 5a). This bar offers an at-a-
glance summary of proofreading completion, helping users monitor
coverage, revisit specific branches, and avoid redundant effort—thereby
promoting transparency and sustaining motivation.
Tile-Based Instance Inspection. Synapse instances are rendered as
2D tiles (Fig. 5b), each centered on a representative slice (R4). Users
can scroll through adjacent slices directly in tile to inspect local struc-
tures, allowing fast yet informed validation. If further structural context
is needed, the full 3D view opens at the exact spatial synapse instance
location, supporting multi-scale exploration and reducing ambiguity
during evaluation (G1, G3).

6.2 Error Categorization View

In the Error Categorization view (Fig. 5c-d), users can assign prede-
fined error types or define custom labels (T2), directly supporting G1,
G3, and G4. This structured stage enforces task separation (R5), en-
abling users to focus solely on error categorization, and helps maintain
annotation transparency and reproducibility (G5). The two-phase work-
flow of error detection followed by categorization provides a built-in
validation loop and enables direct side-by-side comparison of suppos-
edly incorrect instances.
False Negative Discovery. False negatives—i.e., missing synapses—
are identified through interactive exploration in Neuroglancer (Fig. 8),
which allows users to flag regions where annotations may be absent
(G2). When such a region is marked, SynAnno extracts the local volume
and creates a corresponding tile view for synaptic annotation. Users
can then place directional markers and generate a new synapse instance
(T6). This integrated pipeline directly supports tasks involving the
discovery and reconstruction of false negatives, promoting structural
completeness (G2) and functional accuracy (G3), while maintaining
spatial context (R1, R3).



Fig. 7: False Negative Correction Workflow. (a) The user navigates along a neuron branch to search for false negatives (FNs) and places a marker
at the center of any identified instance. (b) After confirming the bounding box, (c) SynAnno automatically crops the region and (d) labels it as a false
negative. (e) In the Error Correction view, SynAnno can auto-generate depth-wise synapse masks. (f) The user then sets the markers indicating the
direction of the information flow or optionally guides the segmentation process by providing manually drawn masks.

Fig. 8: Neuroglancer Integration. In all three main views—Error Detec-
tion, Error Categorization, and Error Correction (Fig. 5, left, center, and
right, respectively)—users can launch a Neuroglancer view, centered on
the currently viewed instance. In the Error Detection and Error Correction
views, this enables users to search for and identify false negatives. User
study participants highly valued this integration.

6.3 Error Correction View
The Error Correction view (Fig. 5e-f) supports the correction of erro-
neous or incomplete instances identified during the error categorization
flow. This view addresses the need for anatomical fidelity and func-
tional accuracy (G3, G4) by enabling users to revise synapse masks
and reassign directional markers (T4).
Marker and Segmentation Correction. SynAnno’s error correction
interface (Fig. 5f) enables precise editing of pre- and postsynaptic
markers (Fig. 1c, right), which can be interactively placed, adjusted, or
removed to ensure the correct direction of information flow (T4; G3).
Synapse mask correction (T5) is implemented using a hybrid approach
that balances automation and manual control (R4, R5). Corrections
can be applied via three mechanisms: (1) fully automated using a 3D
U-Net, (2) semi-automated by guiding the model with user-provided
masks on selected slices, or (3) fully manual through spline drawing
on all individual slices. The manual interface allows users to define
masks by placing control points that form filled splines in the style
of H01 synapse masks (Fig. 1c, center). An integrated eraser tool
supports localized refinement. This strategy accommodates a range
of user preferences and preserves anatomical precision (G4; R4, R5).
The Error Correction view also supports adding and segmenting new
synapses (Fig. 5e) that were missed during automated prediction (T6).

7 MACHINE LEARNING GUIDED ERROR CORRECTION

The primary challenge in synapse segmentation lies in accurately iden-
tifying each instance and generating an initial 2D mask. Once this first
2D mask was created, annotators must spatially extend the mask to
cover the 3D structure of the synapses. This repetitive, slice-by-slice

manual annotation compromises efficiency and consistency, particularly
when scaling to large datasets. To alleviate this burden, we implement a
3D U-Net [33, 44]-based model designed to fully automate the segmen-
tation or volumetrically extend masks across all slices of an instance.
By leveraging deep learning, our approach significantly reduces manual
intervention, enabling annotators to focus on higher-level corrections
while ensuring consistent volumetric segmentation.
Model Integration. Our 3D U-Net supports users in creating
synapse masks for false negatives and instances labeled as incorrect
in SynAnno’s Error Detection view and categorized accordingly in
SynAnno’s error Error Categorization view (Fig. 2a–d). Users can
employ the model for fully automated instance segmentation or inte-
grate it into an interactive refinement workflow. In this workflow, the
user iteratively guides and enhances the model’s output. Rather than
relying solely on automated predictions, users can intervene by manu-
ally drawing masks on selected slices within the Error Correction view
(Fig. 2e–f). Once a mask is provided, the model propagates the mask
depthwise, using the user-defined mask(s) as a seed. The resulting
synapse mask can then be reviewed across slices, with manual and
auto-generated masks visually distinguished using different colors for
clarity (Fig. 1c, left vs. center). If the output is unsatisfactory, users
can refine it by selecting additional key slices, drawing new masks, and
re-triggering the synapse segmentation. The model incorporates these
corrections, iteratively updating its predictions based on user input.
This adaptive workflow allows for flexible intervention, ranging from
minimal corrections—where the model generates an accurate mask
with little to no user input—to fully manual painting if required.
Model Training and Dataset Generation. Our method employs a
deep 3D U-Net that takes in a dual-channel 3D volume, one channel for
the raw EM image and one for user-defined seed mask, to produce a re-
fined single-channel synapse segmentation. Due to memory constraints,
the model was trained on a small subset of the H01 dataset, comprising
300 instances for training and 50 for cross-validation. We applied data
augmentation, such as random flips and rotations, to increase training
diversity. Despite the small training set, the model demonstrated robust
performance across diverse scenarios. To emulate realistic user behav-
ior, each instance undergoes multiple segmentation scenarios. One or
more seed segmentation layers are retained, while most target slices are
hidden from the model. The number of hidden slices is drawn from a
normal distribution, introducing variability in the training data. Testing
revealed that including instances with zero mask is essential to ensure
reliable mask generation in the absence of any seed input and to prevent
the model from overcommitting to seed masks.

The model employs a five-level encoder-decoder architecture
(32–256 feature channels) and is trained using a weighted binary cross-
entropy loss between predicted masks and ground truth masks. Op-
timization is performed with the Adam optimizer [20], and model
selection is based on validation loss checkpointing. Training proceeds
for up to 400 epochs with early stopping (patience of 25) and an initial
learning rate of 5× 10−5, reduced on plateau by a factor of 0.5. All



Fig. 9: U-Net Model for Synapse Mask Prediction. The electron
microscopy (EM) image volume is paired with user-defined seed masks
(left, magenta) to form a two-channel input. The corrected masks (right,
blue) are auto-generated depthwise around the user’s original mask.

experiments were conducted on a SLURM-managed compute node
with 1×NVIDIA A10 GPU, 4 CPU cores, and 128 GB of RAM.

8 DATA & IMPLEMENTATION

SynAnno relies on five core data sources: (1) raw EM images, (2)
synapse masks, (3) neuron masks, (4) neuron skeletons, and (5) meta-
data such as voxel size. These sources collectively provide the structural
context needed for guided proofreading of synaptic connectivity. Neu-
ron segmentation supports the selection and isolation of individual
neurons for focused analysis. Skeletons provide a simplified geometric
representation for rendering, compartmentalization, and pathfinding,
enabling users to navigate and interpret neuronal morphology. Metadata
enables systematic synapse-to-skeleton mapping to support circuit-level
analysis and allows flexible filtering and processing of synaptic data
during proofreading.
Neuron Skeletons. We obtain the neuron skeletons via H01’s cloud
storage using the CloudVolume [36] library. Spatial coordinates were
normalized to nanometer units, after which we resolved structural incon-
sistencies and restored missing parent-child relationships. To facilitate
downstream partitioning, we pruned peripheral branches that did not
significantly contribute to the neuron’s structural or functional inter-
pretation. Upon user selection, SynAnno retrieves the corresponding
neuron skeleton and partitions it into structurally coherent segments.
(Fig. 2b). Each neuron is modeled as an undirected graph, rooted
at the soma when available; otherwise, a central node is estimated
using the PageRank algorithm. A depth-first search (DFS) traversal
imposes a hierarchical node ordering based on traversal indices. Branch
points—nodes with degree ≥ 3—serve as natural mask boundaries. To
avoid over—fragmentation, small segments are merged with adjacent
ones based on traversal continuity and connectivity constraints. The
resulting segments are then ordered to reflect biologically meaningful
hierarchies, enabling efficient, compartment-wise proofreading. Skele-
ton processing, partitioning, and pathfinding were implemented using
the Navis [34] and NetworkX [18] libraries. For the usability studies,
case studies, and the interactive demo of SynAnno available at the
time of writing, the materialization metadata was limited to synapses
associated with a curated subset of 104 fully proofread neurons.
Synapse Data. Synapse masks and metadata were retrieved from the
H01 cloud storage and the associated connections database. To estab-
lish spatial correspondence between neuronal morphology and synaptic
connectivity, synapse coordinates were extracted and converted from
voxel space to nanometers, forming a spatial point cloud. The mate-
rialization table was filtered to retain only synapses associated with
the selected neurons. A KDTree was constructed from the skeleton
node coordinates to enable efficient nearest-neighbor queries. Each
synapse was mapped to its closest skeleton node, and its corresponding
structural section and traversal index were recorded. This mapping
yielded a dataset of synapses embedded in their neuronal context.
System. SynAnno is implemented using Python’s Flask framework
and vanilla JavaScript. The open-source code and a demo are available:
https://github.com/PytorchConnectomics/SynAnno.

9 EVALUATION

To assess the usability, effectiveness, and real-world applicability of
SynAnno, we conducted a qualitative user study with seven experienced

connectome proofreaders, a post-session survey, and a set of in-depth
case studies targeting critical annotation and proofreading tasks. We
aimed to gather user sentiment and detailed task-specific feedback to
inform ongoing system development. The evaluation was designed
to address three core questions: (1) How well does SynAnno support
the cognitive workflows of expert annotators? (2) Which aspects of
the interface and interaction design facilitate or hinder efficient proof-
reading? (3) What improvements could enhance user experience and
task performance? We first present the results of the user study and
survey, followed by detailed case studies and a summary of updates
implemented in direct response to user feedback.

9.1 User Study
We conducted seven semi-structured interviews with domain experts to
evaluate the usability and effectiveness of SynAnno. Each session lasted
approximately one hour. Following a brief introduction to SynAnno,
participants were invited to independently steer the interface and test
the workflows based on their expectations and annotation practices.
A short follow-up survey was distributed for participants to complete
independently after the session.
Survey Results. The survey included eight questions rated on a
five-point Likert scale (Strongly Disagree, Disagree, Neutral, Agree,
Strongly Agree), covering key aspects such as workflow support, navi-
gation, segmentation, and labeling.

Figure 10 summarizes the aggregated survey responses. Each row
represents a specific question (Q1–Q8). Neutral responses are centered
around the y-axis, with disagreement extending to the left and agree-
ment to the right. Percentages on the right side of each bar indicate the
share of users who agreed with each statement. The three highest-rated
items—Q1 (workflow support), Q2 (intuitive labeling), and Q3 (dataset
navigation)—each received 100% agreement, highlighting these as key
strengths of the tool. Statements on general proofreading efficiency and
ML-assisted synapse segmentation (Q4–Q5) received 85% agreement.
Slightly lower scores were recorded for Q6 and Q7 (both 71%), which
addressed logical neuron traversal and progress tracking, respectively.
Q8 (false negative handling) received the lowest score (57%). Feed-
back on Q4 seems to reflect that some participants, particularly those
involved in initial synapse segmentation or region-of-interest identifica-
tion, were less familiar with workflows for correcting existing masks.
Concerning Q5, the discussion focused on when synapse masks are
necessary. For workflows focused on annotating information flow direc-
tion alone, synapse mask correction was seen as less relevant. However,
for tasks such as estimating contact areas, the ML-assisted synapse
segmentation was considered highly beneficial. Responses to Q5 and
Q6 aligned with suggestions for structural improvements, including
synapse-weighted partitioning, manual compartment definition, and
hierarchical skeleton representations in the legend. Q8 reflects concerns
voiced during interviews regarding reliably identifying false negatives.
Participants emphasized the need to traverse entire compartments and
noted a cognitive disconnect between proofreading and initial annota-
tion tasks. Participants’ qualitative feedbacks are summarized below.
Interface and Visualization. A clear point of consensus was the
need for larger, resizable tiles in the Error Detection view (Fig. 5,
left), along with the dynamic adjustment of tile size and slice count
based on dataset properties and available screen space. The integration
of Neuroglancer (Fig. 8) was widely praised as a powerful feature
for context-rich exploration of challenging instances. One participant
suggested enabling direct access to Neuroglancer to streamline context
switching. Others, in turn, proposed further enhancing the instance
module view to eliminate the need to switch to Neuroglancer entirely.
Several usability enhancements were suggested to improve the overall
interface, such as keyboard shortcut–based navigation and making
neuron branches selectable via a clickable skeleton in the minimap.
The contextual visual cues provided by skeleton rendering (Fig. 5a)
were frequently cited as valuable for supporting orientation.
Workflow and Task Logic. The most universally praised feature of
the tool was its structured, section-based review workflow, as illustrated
in Figure 6. Participants consistently reported that this approach sup-
ported sustained cognitive focus and enabled systematic traversal of

https://github.com/PytorchConnectomics/SynAnno


Fig. 10: User Study Results. We collected aggregated survey re-
sponses from N=7 users. The results show strong satisfaction with core
functionalities, including workflow support, intuitive labeling, and naviga-
tion (Q1–Q3), each receiving 100% agreement. Moderate agreement
was observed for ML-assisted segmentation and proofreading progress
tracking (Q4–Q7). The lowest score was given to the intuitiveness of
adding false negatives (Q8), indicating a need for improvement.

the neuron. The ability to pause and resume work at the exact location
was described as a transformative capability for long-term annotation
projects. Participants expressed divergent views on task flow struc-
ture. Some preferred immediate labeling after inspecting an instance to
avoid the cognitive burden of revisiting items. Others favored separat-
ing review from labeling, emphasizing benefits such as self-checking,
comparative validation, and more accurate error correction. Progress
tracking was consistently highlighted as a key feature. Individual
participants requested additional visual aids, including section-level
progress bars and markers for reviewed instances in the tile view, to
reduce oversight and duplication. Improved partitioning strategies were
also discussed. One key recommendation was to balance the number
of synapses per section to promote equitable workload distribution.
Another suggestion was to allow users to partition neurons manually,
offering greater flexibility in managing complex data regions.
Error Handling and Labeling. Participants offered nuanced feed-
back on error labeling strategies, emphasizing the need for additional
predefined labels such as Missing Mask and Merged Mask to enhance
error detection precision and filtering efficiency while reducing re-
liance on manually created custom labels. A significant request was
the ability to define custom error vocabularies on a per-dataset basis to
accommodate domain-specific terminology and validation objectives.

One of the most debated topics was including an “unsure” label.
Several participants regarded this option as essential for managing
ambiguous cases, enabling deferred judgment or later comparison in
the Error Categorization view. They expressed concern that forcing
a binary choice between “correct” and “incorrect” could introduce
decision bias. Conversely, others worried that the “unsure” label could
reduce accountability, encouraging annotators to overuse it to avoid
making difficult decisions. The prevailing recommendation was to
make the availability of this label configurable, allowing individual labs
to tailor its use according to their review policies. The Error Catego-
rization view was widely praised for supporting iterative proofreading.
However, alternative modes were also proposed, such as a swipe-based
interface, which would present one instance at a time. This could be
useful when individual instances are largely uncorrelated.
False Negative Detection. False negative (FN) detection emerged as
one of the most challenging and contested aspects of the annotation
workflow. Participants consistently emphasized that accurately identi-
fying FNs requires systematic, branch-by-branch traversal of the entire
neuron. This makes the process not only cognitively demanding but
also difficult to integrate seamlessly into standard instance-based review

flows. Although the idea of embedding FN detection directly into the
main review interface was met with appreciation, it became clear that
this approach is quite different from the synapse mask review. Attempt-
ing to combine both so closely led to the loss of focus, increased error
risk, and a breakdown in the logical flow of work. Therefore, some
participants advocated for explicitly separating FN detection into its
dedicated workflow phase, allowing users to adopt a different mindset
and strategy for this task. This separation would also enable optimiza-
tions such as tailored tools for scanning long branches, toggling neuron
skeleton visibility, and navigating via section or projection views.
Synapse Masks Correction and Tooling. Users appreciated the abil-
ity to directly correct synapse masks within SynAnno, highlighting
the marker correction feature—used to indicate information flow di-
rection—for its speed and efficiency. The option to place markers on
arbitrary, independent slices was well-received for its flexibility. The
U-Net autocomplete feature was a major strength, reducing redundancy
and fatigue during review. However, users expressed a need for more
manual control, suggesting features like a brush tool for mask painting,
adjustable auto-segmentation, and finer control over mask radius.

9.2 Case Study

To evaluate the real-world applicability of SynAnno, we conducted four
focused case studies (C1 - C4), each involving a single expert user.
C1 – Detecting Erroneous Synapses. Here, the user reviewed pre-
existing synapse masks using the Error Detection View (Fig. 5b), la-
beling each instance as correct, incorrect, or unsure. They noted that
the grid-based layout enabled fast and structured progression through
the neuron, unlike their usual workflow of manually navigating 3D
volumes using spreadsheets. However, the small, fixed tile size was
seen as a bottleneck, as it required frequent context switching. Thus,
we made the number of tiles per page configurable to accommodate
different screen sizes and user preferences. While the user praised the
structured flow and the ability to progress quickly through the neuron,
they may have overused the unsure” label to delegate complex cases
for supposed later review, reinforcing earlier discussions around anno-
tation confidence and reviewer accountability. The user also requested
a feature to track which instances had already been reviewed on a page.
At the time of testing, 24 instances were shown per page without any
additional identifiers; we have since added visible instance IDs in the
top-right corner of each tile to address this need.
C2 – Identifying False Positive Synapses. Here, the user was asked
to review the synapse masks of five neuron compartments using the
Error Categorization View (Fig. 5c) to identify false positive synaptic
annotations. The task was completed with surprising speed and con-
fidence, although the user relied heavily on Neuroglancer. Compared
to a previous dataset of a fly brain, the H01 dataset was perceived as
more challenging, with synapses exhibiting less pronounced features.
Consequently, the user suggested adding an option to bypass the 3D
skeleton view and jump directly into the more detailed 3D Neuroglancer
interface, reducing the number of context switches. Overall, the user
quickly adapted to the tool and inquired when it would be available in
their daily workflow.
C3 – Correcting Synapse Masks. This task involved correcting
poorly aligned or incomplete synapse masks using the drawing mod-
ule and U-Net–assisted auto-completion using the Error Correction
View (Fig. 5d). The user was asked to correct the masks slice by slice
manually. For a second subset, we enabled support for the 3D U-Net,
allowing both fully automated and semi-automated synapse segmen-
tation. The U-Net was highly praised for enabling users to select an
arbitrary slice as seed inputs. Overall, the tool significantly reduced
the repetitiveness of mask drawing. The user observed that drawing a
single representative slice could dramatically improve the quality of
the synapse mask. However, they requested a tool to make corrections
to auto-generated masks, like freeform adjustments.
C4 – Searching and Adding False Negative Synapses. This task
combined exploratory traversal with instance creation, including mark-
ing the center of false negative (FN) candidates, assigning the markers
for the information flow direction, and generating synapse masks. The



Fig. 11: Refactored Drawing Module. Updated drawing module based
on user feedback, featuring mouse wheel image slice scrolling, a center
slice indicator, dynamic coordinates, keyboard shortcuts, and improved
spline highlighting. The figure depicts the initial version to the right and
the refactored version to the left.

user navigated to a selected neuron section, identified unannotated
synapses, and marked their center points. SynAnno extracted the re-
gions, automatically labeled them as FNs, and enabled rapid annotation.
The U-Net auto-completion and marker placement tools were seen
as user-friendly and efficient (Fig. 7). Nonetheless, this case study
confirmed that false negative detection remains the most cognitively
demanding task. Users requested visual aids—such as heatmaps or
section-level progress indicators—to help avoid missed regions. The
session also sparked a discussion on whether FN detection should be
integrated into the proofreading interface or moved to a dedicated view.
Overall, FN detection remains the most persistent challenge. That said,
the effort to build an end-to-end tool was well received, and the user
emphasized that SynAnno should continue to support FN addition.

9.3 Incorporating User Feedback

Based on the feedback gathered from the usability and case studies, we
implemented several key updates to SynAnno. One notable enhance-
ment is the revised drawing module, shown in Figure 11. We increased
the image size, removed the slider, and introduced mouse wheel-based
slice navigation. The slider was initially included to provide precise
control over the displayed slice, particularly for accurate seed mask
placement. However, we replaced it with wheel-based scrolling to
reduce interaction complexity and align the user experience with that
of the Error Detection and Error Correction View modules.

To address orientation concerns, we introduced a tag marking the
center slice in the top-left corner. Additionally, slice coordinates are
now displayed and dynamically updated in the header during scrolling,
helping users maintain spatial awareness. To streamline interactions
further, we implemented keyboard shortcuts for essential actions such
as closing the window and re-adding pre- or postsynaptic markers. The
enlarged image and module layout are designed to decrease the need
to open Neuroglancer, while also aligning with user preferences for a
more self-contained workflow. In response to user feedback, we also
improved the visibility of splines by enhancing their highlighting prior
to color filling. Further improvements include the ability to revise
annotations directly in the Error Categorization view (Fig. 5,d). The
number of displayed tiles can now be configured based on dataset
complexity, screen size, and user preference. Instance IDs were added
to each tile in the Error Detection view (Fig. 5, left) to help users better
track and distinguish them, showing them directly on the image tiles.
Additionally, navigation was improved: users can now jump to specific
neuron sections by clicking entries in the metadata table, rather than
paging through the interface to reach a particular section.

10 DISCUSSION

User Expertise in Synapse Proofreading. Identifying experts for
our user study was a challenge, as large-scale synapse proofreading
remains a specialized task within the neuroscience community. While
many labs work with connectomics data, relatively few researchers
are directly involved in manual proofreading at scale. The availability
of high-resolution datasets has grown in recent years, but the process
of verifying AI-generated synapse masks remains tedious and time-
consuming. By introducing SynAnno, we aim to lower the barrier to
entry for connectomics proofreading, making it easier for neurosci-
entists to efficiently correct errors and improve synapse mask quality.
We hope that structured proofreading workflows, such as those imple-
mented in SynAnno, will encourage broader adoption of systematic
annotation review across neuroscience labs.
Limitations. While SynAnno improves proofreading efficiency, it has
certain constraints. The tool is designed primarily for synaptic annota-
tion and structured proofreading of neuron-specific synapse collections.
Currently, it does not support full connectome-wide comparisons of
synaptic patterns or large-scale statistical analysis of synapse distri-
butions. Additionally, while our 3D U-Net model aids in synapse
mask correction, its performance depends on the quality of the training
data. Challenging cases, such as synapses located near dense axonal
crossings, may still require substantial manual correction. Another
limitation is our instance selection algorithm, which currently does not
fully resolve overlapping synapse masks, sometimes requiring users
to manually distinguish between adjacent synaptic instances. False
negative detection remains a cognitively demanding task, indicating the
need for additional visual aids or dedicated interfaces. Addressing these
issues will be key to enhancing the tool’s usability and effectiveness.
Balancing Automation and User Control. A core design principle
of SynAnno is to integrate machine learning into the proofreading
workflow while maintaining user oversight. Automated synapse seg-
mentation models can reduce the burden of manual annotation, but
full reliance on AI-generated results risks introducing systematic er-
rors. Our approach allows users to interactively validate and correct
errors while leveraging AI-assisted guidance. However, this comes
with a trade-off: increased automation speeds up proofreading but can
reduce user engagement in critical decision-making. Future iterations
of SynAnno will aim to refine this balance by providing more adaptive
user controls, such as the ability to manually partition neurons and
refine synapse segmentation decisions.

11 CONCLUSION AND FUTURE WORK

SynAnno introduces an interactive and structured approach to proof-
reading synaptic annotations, addressing the challenges of large-scale
connectomics datasets. By guiding users through a neuron-centric work-
flow, integrating hierarchical visualization, and leveraging machine
learning-assisted error correction, SynAnno enhances the accuracy and
efficiency of synaptic annotation. The tool provides a scalable solution
for validating AI-generated masks, ensuring that neuronal connectiv-
ity reconstructions remain biologically accurate. While designed for
synaptic annotation proofreading, its structured workflow and interac-
tive correction mechanisms could be extended to other neuroanatomical
annotation tasks that require human validation. Looking ahead, we plan
to expand SynAnno ’s capabilities to better support evolving connec-
tomics research. A key focus is to both expand the training of our 3D
U-Net model and implement an online training strategy that enables
dynamic adaptation to challenging segmentation cases by directly in-
corporating manually corrected instances from the Error Correction
view. Additionally, we aim to extend SynAnno ’s applicability to other
neuronal structures, further broadening its impact in neuroscience. En-
hancing user-driven neuron partitioning will provide greater flexibility
in handling complex neuronal architectures, while improvements to our
instance selection algorithm will refine segmentation handling, reduc-
ing overlap and ensuring clear, distinct annotations. As neuroscience
datasets continue to grow in scale and complexity, SynAnno will evolve
to meet the increasing demand for precise, efficient proofreading tools,
enabling more accurate and reliable connectome reconstructions.
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