
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 11, NOVEMBER 2024 3719

WASPSYN: A Challenge for Domain Adaptive
Synapse Detection in Microwasp

Brain Connectomes
Yicong Li , Graduate Student Member, IEEE, Wanhua Li, Member, IEEE,

Qi Chen, Graduate Student Member, IEEE, Wei Huang , Yuda Zou, Xin Xiao, Kazunori Shinomiya ,
Pat Gunn, Nishika Gupta, Alexey Polilov , Yongchao Xu , Yueyi Zhang , Member, IEEE,

Zhiwei Xiong , Member, IEEE, Hanspeter Pfister , Fellow, IEEE, Donglai Wei,
and Jingpeng Wu , Member, IEEE

Abstract— The size of image volumes in connectomics
studies now reaches terabyte and often petabyte scales
with a great diversity of appearance due to different sample
preparation procedures. However, manual annotation of
neuronal structures (e.g., synapses) in these huge image
volumes is time-consuming, leading to limited labeled train-
ing data often smaller than 0.001% of the large-scale image
volumes in application. Methods that can utilize in-domain
labeled data and generalize to out-of-domain unlabeled
data are in urgent need. Although many domain adaptation
approaches are proposed to address such issues in the
natural image domain, few of them have been evaluated
on connectomics data due to a lack of domain adaptation
benchmarks. Therefore, to enable developments of domain
adaptive synapse detection methods for large-scale con-
nectomics applications, we annotated 14 image volumes
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from a biologically diverse set of Megaphragma viggianii
brain regions originating from three different whole-brain
datasets and organized the WASPSYN challenge at ISBI
2023. The annotations include coordinates of pre-synapses
and post-synapses in the 3D space, together with their one-
to-many connectivity information. This paper describes the
dataset, the tasks, the proposed baseline, the evaluation
method, and the results of the challenge. Limitations of the
challenge and the impact on neuroscience research are also
discussed. The challenge is and will continue to be available
at https://codalab.lisn.upsaclay.fr/competitions/9169. Suc-
cessful algorithms that emerge from our challenge may
potentially revolutionize real-world connectomics research
and further the cause that aims to unravel the complexity of
brain structure and function.

Index Terms— Connectomics, deep learning, electron
microscopy, domain adaptation, synapse detection.

I. INTRODUCTION

NEURONS are the basic functional units of the brain
that can be long enough to span brain hemispheres

and specifically connect to other neurons with nanometer-
sized synapses. Synapses constrain the information flow in the
brain and thus knowing synaptic connectivity is essential for
understanding brain function and dysfunction. To investigate
such connectivity, neuronal imaging methods with both a large
field of view and nanometer resolution are needed. Fortunately,
with the development of Volume Electron Microscopy [1],
[2], [3], [4], [5], those requirements are met and as a result,
many terabyte and petabyte-scale image volumes are being
produced [6], [7]. Techniques involving machine learning [8],
[9], especially Deep Learning [10], can label such large-
scale image volumes automatically with good accuracy [11],
provided that large-scale annotated data are available for
training the model. However, manual annotation of neuronal
structures (e.g., synapses) in these huge image volumes is
time-consuming [12], leading to limited labeled training data
often smaller than 0.001% of the large-scale image volumes
in application. Moreover, image volumes across different brain
samples may manifest a great diversity of appearances, making
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it hard for deep learning models that are trained with data from
one sample to generalize well on data from other different
samples. In the natural image domain, a line of research
called domain adaptation (DA) is well-suited to tackle the
aforementioned issues but it is less evaluated on the synapse
detection task in the connectomics field, due to a lack of
domain adaptation benchmarks.

Based on limited training data, some challenges are hosted
for developing state-of-the-art machine learning algorithms
and most of them are designed for neurite tracing, such
as SNEMI3D1 and BigNeuron [13] in VEM and Light
Microscopy images, respectively. In the neuron connectivity
graph, neurons are the nodes and synapses are the edges.
There is a lack of synapse detection challenges compared
with neurite tracing. Here, we hosted a challenge, called
WASPSYN, that aims to set a new benchmark to evaluate
the effectiveness of current domain adaptation methods when
tailored to the synapse detection task. The challenge data
consists of 14 carefully annotated image volumes from
a biologically diverse set of microwasp (Megaphragma
viggianii) brain regions, originating from three different
whole-brain datasets. Coordinates of pre-synapses and post-
synapses in the 3D space, together with their one-to-many
connectivity information, are included in the annotations. This
paper gives an overview of the challenge, covering the dataset,
the tasks, the proposed baseline, the evaluation method, and
the analysis of the challenge results.

A. Related Work
In this section, we provide a comparison between the

WASPSYN challenge and an existing challenge CREMI
(Circuit Reconstruction from Electron Microscopy Images),
as well as an overview of notable literature on synapse
detection and domain adaptation.

1) Comparison With an Existing Challenge: CREMI2 is
a challenge at MICCAI 2016 conference. Volumes of
adult Drosophila melanogaster brain with pre- and post-
synapse annotations are provided in this challenge. It has
substantially facilitated computer vision research in the
connectomics community and helped to achieve accurate
neuron segmentation and synapse detection results. However,
CREMI still lacks coverage that we aim to address in the
WASPSYN challenge:

• Volumes in CREMI are acquired using Serial
Section Transmission Electron Microscopy (SS-
TEM) with anisotropic voxel size. Thus, one missing
task is to develop the analysis of another advanced
imaging method, Focused Ion Beam Scanning Electron
Microscopy (FIB-SEM), with isotropic voxel size. The
voxel size of our volumes is 8 × 8 × 8 nm compared
with 4 × 4 × 40 nm in CREMI. A detailed comparison
of imaging methods can be found in [2].

• Our challenge focuses on testing generalization capabil-
ity. In contrast with CREMI, whose data are from the
same image stack where the test volumes are close to
the training volumes, we provide data from three brain

1https://snemi3d.grand-challenge.org/
2https://cremi.org/

samples, generating a diverse set of test volumes from
different domains. In total, we have annotated 14 volumes
compared to 6 volumes in the CREMI challenge.

• Different from CREMI in which synaptic clefts and post-
synaptic density are easy to identify, such structures in our
volumes are not clear due in part to smaller neurons and
lower planar resolution. As a result, it is more challenging
to detect post-synapses in our data.

• For each synapse, CREMI annotates multiple point pairs
across the synaptic cleft and there are many such points
in each pre-synapse. Since the post-synaptic densities are
not always clearly visible but pre-synaptic motifs (also
known as T-bar ribbons in the insect nervous system) are
always visible in our volumes, we label one point in each
T-bar ribbon in the bouton. Thus, the distance from the
pre-synapse to the corresponding post-synapses is much
longer than the cross-membrane distance in CREMI.
This requires a larger field of view when developing the
machine learning model. Besides, deciding pre- and post-
synapse connectivity becomes harder in the WASPSYN
challenge as our data exhibit one-to-many mapping while
CREMI data exhibit one-to-one mapping crossing the
post-synaptic density.

• The mushroom body neurons in insects have distinct
synapse structures compared to other neurons. No such
volumes are presented in the CREMI challenge.

• CREMI provides cell instance segmentation annotations
for all the volumes, which could be used to help train the
models. In contrast, we do not have those labels, resulting
in a harder synapse detection task.

In short, an immense diversity of neuron and synapse textures
exists in WASPSYN data and it is challenging to maintain
consistent accuracy across different brain samples. We focus
on testing the generalization capability of domain adaptation
algorithms and hope that successful methods emerging from
this challenge will reduce the required amount of manual
annotations in real-world connectomics applications.

2) Synapse Detection: Synapse detection [14], [15] has
gained increasing attention as it is a crucial task in connec-
tomics. Early research methodologies [16], [17], [18], [19],
[20] primarily centered around segmenting the synaptic cleft
region with hand-crafted image features. Becker et al. [17]
introduced the context cues features, which were computed in
multiple image channels with several Gaussian kernels. Then
AdaBoost was further employed to select the discriminative
features. Jagadeesh et al. [18] presented an attribute-based
descriptor for synapse classification and localization in SS-
TEM images of the rabbit retina. Kreshuk et al. [19]
proposed a two-stage training algorithm and performed
pixel classification directly in 3D, where a Random Forest
classifier was trained for final object classification. Due to the
insufficient discriminative power of the hand-crafted features
used in these methods, their performance still does not meet
the practical demands.

With the development of deep learning techniques, the field
of synaptic detection in electron microscopy volumes has
witnessed significant advancements in recent years. Diverse
strategies [21], [22] have emerged for the automated detection
of synapses, while further investigations have delved into the
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intricacies of synaptic detection in more challenging model
organisms. Significantly, in the context of vertebrates, recent
methodologies have showcased a dependable ability to deduce
synaptic connectivity. For example, Dorkenwald et al. [23]
developed the SyConn framework for synapse detection,
which attained great results on the electron microscopy
data from zebrafish, mouse, and zebra finch using deep
convolutional neural networks. Nonetheless, when it comes to
insect brains, the process of recognizing synaptic connections
is notably more intricate. This complexity arises from the
relatively smaller size of synapses in contrast to those
in vertebrates. Additionally, there’s a frequent occurrence
of polyadic synapses in insect brains, wherein a single
pre-synaptic site establishes connections with multiple post-
synaptic sites.

To tackle these challenges, Kreshuk et al. [24] proposed
a probabilistic graphical model to learn the synaptic partner
assignment, where random variables were used to represent
adjacent neurite synaptic roles. Heinrich et al. [25] proposed
a 3D U-Net architecture and training approach for synaptic
cleft segmentation in non-isotropic SS-TEM of insect nervous
systems, achieving significant advancements over previous
methods on the CREMI challenge dataset. Huang et al. [26]
introduced a two-step automated system that predicts synaptic
connections in Drosophila brain images, first identifying T-
bars and then predicting partnering post-synaptic densities,
showing its effectiveness in accurately reconstructing complex
synaptic connections and outperforming existing methods.
Buhmann et al. [14] further introduced a single-step method,
which simultaneously identifies pre-synaptic and post-synaptic
sites and predicts their connectivity using a 3D U-Net. In this
work, we further shift our attention to synapse detection within
the microwasp brain, which has a much higher synapse density.

3) Domain Adaptation: Deep learning-based machine learn-
ing technology [27], [28], [29] has achieved remarkable
success over the past decade. Along with its wide application,
a significant challenge arises due to the domain shift
problem [30], stemming from variations in distributions
between the source or reference data and the target data. As a
special case of transfer learning [31], domain adaptation has
emerged as a promising solution to address the above issue,
which aims to bridge the distribution gap that exists among
different yet interconnected domains. Existing methods for
domain adaptation can be categorized into supervised DA,
semi-supervised DA, and unsupervised DA based on label
availability in the target domain [32], [33]. Supervised DA
usually assumes a small number of labeled data from the target
domain are available for training the model. However, data
annotation is time-consuming and labor-intensive, particularly
in the context of medical image data [34]. Therefore, more
challenging scenarios have been proposed: semi-supervised
DA and unsupervised DA. For semi-supervised DA, a limited
set of labeled data is augmented with a supplementary pool of
unlabeled data from the target domain to facilitate the training
process. Meanwhile, unsupervised DA exclusively relies on
the utilization of unlabeled target data to train the adaptation
model. In this paper, we focus on the most challenging setting
where no labeled target domain data are available.

To bridge the domain gap, existing unsupervised DA
methods often consider aligning at two distinct levels:
images and features [34], [35]. The primary objective
of feature-level alignment is to acquire domain-invariant
features across various domains, accomplished through the
utilization of specifically tailored deep neural networks.
Yan et al. [36] proposed a discrepancy-based method,
which fine-tuned the deep models on the target domain
with pseudo labels. ADDA [37] presented an adversarial-
based approach, which employed generative adversarial
networks (GANs) to guarantee indistinguishability between
the source and target domains. Some research [38] also
explored reconstruction-based approaches, which leverage
data reconstruction as an auxiliary task to create a shared
representation between the source and target domains. While
these works focus on feature-level alignment, another line of
research performs image-to-image translation for unsupervised
DA. For example, Pizzati et al. [39] employed an image-to-
image translation network to bridge domain gaps and achieved
great performance in semantic segmentation tasks. Li et al.
[40] demonstrated improved neuron membrane segmentation
performance after translation from the X-ray domain to the
electron microscopy domain. Some of these DA methods are
explored and utilized by participants in this challenge.

B. Main Contributions

The main contributions of this paper are three folds:
• We provide the first domain adaptation benchmark for

synapse detection in the connectomics field, including
14 volumes of FIB-SEM images from microwasp brains
with pre- and post-synapse annotations.

• We set up an online evaluation website that is accessible
continuously for researchers to test and compare the
performance of their proposed algorithms.

• We give a detailed description of the dataset, propose a
reasonable baseline method, and conduct a comprehen-
sive analysis of challenge results.

II. METHODS

A. Challenge Organization

The WASPSYN challenge is sponsored by the Simons
Foundation and is associated with the 2023 IEEE 20th Interna-
tional Symposium on Biomedical Imaging3 (ISBI 2023). It is
also covered in media by Computer Vision News.4 Participants
can download the labeled training set and unlabeled test
set for developing synapse detection algorithms. The use
of additional datasets from other sources is not allowed.
Results on the test set should be submitted to the challenge
website at https://codalab.lisn.upsaclay.fr/competitions/9169
by participants for evaluation. The maximum number of
submissions per day per team is 5 and the teams should
submit all cases in the test set. A continuous evaluation
is available at the challenge website but only the top 3
participants from submissions created before the challenge

3https://biomedicalimaging.org/2023/challenges/
4https://www.rsipvision.com/ComputerVisionNews-2023March/42/
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Fig. 1. Image sections from three samples. Top row to bottom row:
sections from sample 1, sample 2, and sample 3. Left column to right
column: sections from X-Y, X-Z, and Y-Z plane. Arrows: synaptic sites
identified in the section. Red arrows: synaptic sites of mushroom bodies
specifically. Scale bar: 0.5 µm.

deadline were awarded prizes and invited to share their
methods at ISBI 2023 WASPSYN challenge workshop. The
dataset will also continue to be publicly available to everyone
after the challenge under the CC-BY license. Participants are
encouraged to perform an uncertainty or statistical analysis
of their algorithms and report the results of the analysis in
their publications. The code availability is voluntary but we
strongly encourage the participants to open-source their code
for reproducibility.

B. Dataset

WASPSYN dataset consists of 14 image volumes from
Megaphragma viggianii, a type of insect with a small brain
size. These wasps have evolved anucleate neurons, likely due
to the selective pressure that has driven miniaturization [41].
The scientific significance is detailed in previous publica-
tions [41], [42], [43]. We present a detailed description of
the WASPSYN dataset below.

1) Acquisition: The whole head of Megaphragma viggianii
was firstly stained with heavy metal and embedded in
resin [44]. Subsequently, the sample was imaged using an
enhanced Focused Ion Beam Scanning Electron Microscope
(FIB-SEM) [45], [46], [47] with an isotropic voxel size of
8 × 8 × 8 nm.

2) Notable Features:
• Cross-sample variation: We imaged three brain samples

and then annotated 14 image volumes from them.
As shown in Fig. 1, significant appearance differences
(i.e., domain differences) can be observed among three
samples, posing generalization challenges to machine

learning models. Based on our observation, microwasp
brain anatomy is conservative at the neural circuit
level [48]. The variation among different samples is
mostly from sample preparation and imaging parameter
variations, i.e., the samples were prepared according to
a protocol with parameter variations. Specifically, sample
2 was prepared according to the protocol described in [44]
and embedded into Durcupan. Sample 1 and sample
3 were prepared using the same protocol as sample 2 but
with minor differences. Sample 1 was prepared without
ferrocyanide treatment and embedded in Epon. As for
sample 3, the time of primary fixation was reduced and
all washing stages were lengthened.

• Challenging cases: In the mushroom body, multiple
Kenyon cell terminals connect to an output neuron
terminal, exhibiting a rosette-like structure. Pre-synaptic
terminals of Kenyon cells in a rosette lack platforms and
are smaller than typical pre-synapses, making them harder
to detect.

3) Annotations: Each image volume was initially annotated
by one of five annotators (Section VI). These annotations
were subsequently peer-reviewed by a different annotator.
The annotators, who were either full-time or part-time
technical staff, had specialized training in interpreting electron
microscopy images and annotating ultrastructure in insect
neurons for at least two years. We used CATMAID [49] and
NeuTu [50] with DVID [51] to label the pre-synapses and post-
synapses. In the brain of Megaphragma viggianii, a chemical
synapse consists of a pre-synaptic terminal, accompanied by an
electron-dense motif called T-bar, and multiple post-synaptic
sites characterized by electron-dense regions. A T-bar consists
of a platform, or “table-top”, and a pedestal connecting the cell
membrane and the platform. A pre-synapse point annotation
(T-bar glyph) should be placed at the connecting point of the
platform and the pedestal. A large platform may have contacts
with more than one pedestal, in which case each contact
point should be annotated as a separate pre-synapse. Neuronal
processes are annotated as post-synapses if post-synaptic
density is easy to identify (e.g., in sample 3). If post-synaptic
density is not recognizable (e.g., in sample 1), all bodies
within 40 nm from the edge of the platform are considered
to have post-synapses (see Fig. 2 for details). We expect that
the network trained using our ground truth would learn that
only the touching neurite within a short distance of T-bar
platform (Fig. 2) could be a post-synapse candidate. Fig. 3
shows an example of annotations for an image volume. It can
be observed that each pre-synapse is connected to several
post-synapses, annotated by points and lines representing their
locations and connections. Specifically, the annotations are
coordinates of pre-synapses’ and post-synapses’ locations in
the 3D space, together with their one-to-many connectivity
information.

4) Data Split: Table I provides detailed information on
each image volume in the dataset. The training set includes
5 volumes from sample 3 while the test set includes 9 volumes
(3 from each sample). Participants can access all 14 volumes
but only the training set has ground truth annotations. In such
a design, volumes from sample 3 are considered in-domain

Authorized licensed use limited to: Boston College. Downloaded on March 04,2025 at 01:37:17 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: WASPSYN: A CHALLENGE FOR DOMAIN ADAPTIVE SYNAPSE DETECTION 3723

Fig. 2. The platform of a T-bar is a small structure that typically extends
a few hundred nanometers in length. It is positioned parallel to the
membrane and separated from it by about 40 nm of space, which is
indicated by the dotted lines. The post-synaptic terminals, indicated by
the pink dots, are marked by post-synaptic densities (PSDs; (a)), and
their distribution corresponds to the extent of the platform in principle.
If PSDs are not clearly visible, as in (b), all profiles within 40 nm from the
tips of the platform are considered post-synaptic terminals. Scale bar:
200 nm.

(i.e., source domain) data, and volumes from the other two
samples are considered out-of-domain (i.e., target domain)
data, enabling us to test the generalization ability of machine
learning models.

C. Tasks
In this challenge, we define two computational tasks

following the data annotations:
• Pre-synapse Detection (Task 1): Participants are

required to predict the locations of pre-synapses in the
3D space using the provided dataset.

• Post-synapse Detection (Task 2): Participants are
required to predict the locations of post-synapses in
the 3D space as well as the synaptic connectivity (i.e.,
IDs of the pre-synapses to which the post-synapses are
connected) using the provided dataset.

D. Evaluation of Submissions
Participants are required to submit their detection results

of pre-synapses and post-synapses including their connectivity
for evaluation. To select the appropriate strategy for evaluation,
we follow the newly established Metrics Reloaded5 [52]
framework. Based on the suggestion from the framework,
the detection accuracy of a submission will be evaluated by
solving an assignment problem [53] minimizing the Euclidean
distance between detected synapses and ground truth synapses
to find true matches and calculating the F1-score. Formally,
given a set of detected synapses (D) by a participant and a
set of ground truth synapses (G), we want to find a bipartite
matching f : D → G with the Hungarian algorithm [53] to
minimize the following cost function:∑

d∈D

C(d, f (d)), (1)

where C(·) denotes the Euclidean distance of a matched pair.
Next, F1-score is defined as:

F1 =
2T P

2T P + F P + F N
, (2)

5https://metrics-reloaded.dkfz.de/

where TP is the true positive, FP is the false positive, and FN
is the false negative.

• Evaluation of Pre-synapse Detection: Detected pre-
synapses are considered to be potential matches to the
ground truth pre-synapses. After solving the assignment
problem, an unmatched detected pre-synapse will be
counted as one FP, an unmatched ground truth pre-
synapse will be counted as one FN, and a falsely matched
pre-synapse pair will be counted as one FP and one FN.
The pre-synapse detection accuracy will be expressed as
the F1-score calculated using TPs, FPs, and FNs. Notably,
we use a threshold to determine the falsely matched
pairs. If the Euclidean distance between the detected pre-
synapse and the matched ground-truth pre-synapse in a
pair exceeds the threshold, this pair will be considered
a falsely matched pair. Specifically, for each volume,
we calculate the minimum Euclidean distance between
two pre-synapses. Then, we get the average of these
minimum distances across all volumes and set the half
value of the average as the threshold, which is 88 nm for
pre-synapse detection.

• Evaluation of Post-synapse Detection: Since our data
involves one-to-many synapse connectivity, for each
matched pre-synapse pair, we compare the post-synapses
connected to it by solving the assignment problem
mentioned above. An unmatched but detected post-
synapse will be counted as one FP, an unmatched ground
truth post-synapse will be counted as one FN, and a
falsely matched post-synapse pair will be counted as one
FP and one FN. The F1-score for post-synapse detection
can be computed using TPs, FPs, and FNs. Similarly,
we use a threshold of 52 nm for post-synapse detection.

• Ranking Scheme: For each test volume, we calculate
an F1-score for pre-synapse detection (task 1) and
an F1-score for post-synapse detection (task 2). Then,
we calculate the arithmetic mean of these two scores to
get the final score for each test volume. Lastly, we average
the final scores over all test volumes to determine each
participant’s position on the leaderboard.

E. Baseline Method
To facilitate the challenge and provide the participants with

a starting point for developing their own synapse detection
algorithms, we propose a two-step method based on 3D U-
Net [54], [55] as the challenge baseline which, to the best of
our knowledge, is the first approach that aims to tackle the
one-to-many synapse detection problem, as depicted in Fig. 4.

1) Training: At the training stage, the first step is to train a
model for pre-synapse detection (Fig. 4-a). The input to the
3D U-Net is a small 3D image volume randomly sampled
from the whole volume. Inspired by [56], the images are
augmented by the following methods: brightness and contrast
adjustment, Gamma transform, Gaussian noise or Gaussian
blurring, random black boxes, perspective transformation
in 2D, flipping, transpose, image misalignment by shifting
2D sections. The point annotations (3D coordinates) are
transformed into voxel cubes with a size of 3 × 3 × 3 to
be used as the training target with a binomial cross-entropy
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Fig. 3. Visualization of the ground truth annotations of an image volume from sample 3. Yellow dots: locations of pre-synapses. Cyan dots: locations
of post-synapses. Cyan lines: synaptic connectivity. Scale bar: 0.5 µm.

TABLE I
DETAILED INFORMATION ON EACH IMAGE VOLUME IN THE DATASET

Fig. 4. Baseline method using 3D U-Net. (a) Training of T-bar detection network. The input image patches, subvolumes of ground truth image
volumes, are randomly sampled so that some image patches might not contain any T-bar. (b) Training of post-synapse detection network. The T-bar
is in the center of each input image patch and a fixed patch with a central point is used as a channel of the input. Note that the illustration is 2D while
both the image patches and network are 3D and of isotropic size.

loss. In this way, the output of the model is a 3D pre-
synaptic probability map, similar to a common semantic
segmentation task. The second step is to train another model
for post-synapse detection (Fig. 4-b). The input to the
model includes a pre-synapse sampled from the ground truth
annotations and a small image volume around that pre-synapse
cropped from the whole volume. Similarly, the model aims to

predict a 3D post-synaptic probability map. The 3D U-Net
architecture is modified from a previous synapse detection
method [57]. All kernel sizes are correspondingly changed to
isotropic.

2) Inference: At the inference stage, for pre-synapse
detection, we process a whole image volume using a 3D
sliding window. The window volumes overlap with each other
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Fig. 5. The framework proposed by Team qicq1c [59]. In the first stage,
the team trained an initial segmentation network using the source domain
volumes with ground truth labels. In the second stage, they used the
pre-trained network to generate pseudo labels for the target domain
volumes. Then, the segmentation network is fine-tuned by incorporating
both source labels and target pseudo labels as supervision.

by 50%, yielding eight-fold coverage of each voxel. The
overlapping outputs from the model are blended together
to produce a 3D pre-synaptic probability map. To find the
exact pre-synapse locations, we detect local maxima in the
probability map. As for post-synapse detection, we process
each of the previously detected pre-synapses together with its
surrounding image volume for doing the inference, producing
a 3D post-synaptic probability map. Then, we detect local
maxima in the probability map to find the exact post-synapse
locations. The local maxima is filtered with a threshold of
0.3 and a minimum distance of 15 voxels. The inference is
conducted using chunkflow [58].

III. CHALLENGE ENTRIES

Since the launching of the challenge, 48 teams have
participated and over 255 submissions have been made on the
challenge website. Below is a brief description of the methods
proposed by the top 3 teams.

A. First Place: Team qicq1c
Team qicq1c presented a two-stage segmentation-based

framework (AdaSyn) [59] for domain adaptive synapse
detection with weak point annotations. They address the
detection problem using an instance segmentation method.
In the first stage, the team obtained the ground truth of synapse
masks by expansion operation and trained a 3D segmentation
network to predict synaptic regions. The network outputs two
channels: one for pre-synaptic regions and another for post-
synaptic regions. These predicted masks are then processed
using connected component labeling to separate individual
synapses. The location of each synapse is determined by
calculating the center point coordinate of the corresponding
mask. Then, the team assigned the nearest pre-synapse ID
to each post-synapse using the nearest neighbor principle.
In the second stage, to improve the generalization ability of
the network, they adopted a model pre-trained on the source

Fig. 6. The framework proposed by Team WeiHuang, consists of
Adaptive Instance Normalization (AdaIN) and Consistency Learning
(CL). VS/VT/VT′

: the volume from the source/target/augmented target
domain. PS

pre/PT
pre/PT′

pre and PS
post/P

T
post/P

T′

post: pre- and post-syanpse
predictions from the source/target/augmented target volume. Note
that the prediction branch of VT is stop-gradient, i.e., without back-
propagation.

Fig. 7. The structure of AdaIN in the proposed framework by Team
WeiHuang. FS

i /FT
i : the i -th layer feature in the source/target domain. µT

i
and σT

i : the channel-wise mean and standard deviation of FT
i .

data to generate pseudo labels for the target data. Finally,
the segmentation network is fine-tuned using both source and
target data. The framework is shown in Fig. 5.

B. Second Place: Team WeiHuang

The framework of the proposed method is depicted in
Fig. 6. The team first converted the task of synapse detection
into a segmentation task by transforming each synapse point
annotation into a 3D Gaussian sphere of radius r . The center
of the sphere has a value of 1 while the edge has a value
of 0, and the rest of the values inside the sphere decrease
with a Gaussian function from the center to the edge. Second,
they adopted a 3D ResUNet [56] as a backbone to predict
the paired pre- and post-synapses simultaneously. To tackle
the domain adaptation problem, the team leveraged Adaptive
Instance Normalization (AdaIN) and Consistency Learning
(CL) to narrow the domain gap between the source and
target domain, thereby improving the generalization ability
of the model in the target domain. Inspired by previous
style transfer methods [60], [61], AdaIN is applied on the
shallow layers of the 3D ResUNet to transfer the feature
distribution of the target domain into the source domain,
as shown in Fig. 7. As for CL, following [62], the team
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obtained the counterpart of the target volume by several
augmentation operations, including Gaussian noise, Gaussian
blurring, intensity variations, and cutout. Then, the target
volume and its corresponding counterpart are sent to the
network simultaneously.

C. Third Place: Team Melony

The framework of the proposed method is depicted in
Fig. 8. Considering the clustered nature of post-synapses, the
team proposed a Point Matching Network (PMN) to tackle
the challenge. Specifically, they adopted the VGG-16 [64]
model pre-trained on ImageNet as the backbone to extract
abundant semantic representation. The feature map in stage 3
(downsampled 8 times) and that in stage 4 (downsampled
16 times) are concatenated and then fed into two parallel
network branches. The two branches predict a classification
score map of pre-synapses and post-synapses, respectively.
In the training phase, the ground truth points are matched
with the predicted point proposals based on the matching cost
by the Hungarian algorithm. Regarding the loss function, the
probability of all the point proposals and the distance between
the matched point pairs are considered. In the testing phase,
pre-synapses and post-synapses are obtained by filtering the
classification scores and then matched with each other.

IV. RESULTS

In this section, we will present and discuss the quantitative
results of the baseline and the methods proposed by the top
3 teams, followed by showing qualitative results highlighting
true positive, false positive, and false negative cases.

A. Quantitative Results

Table II presents the overall results of synapse detection.
Table III and Table IV present the results of pre- and post-
synapse detection, respectively, on each volume. As expected,
all methods generally work better on sample 3, which is in
the same domain as the provided training data, compared to
sample 1 and 2 results. Besides, the detection accuracy of
pre-synapses is generally higher than that of post-synapses as
there are many more post-synapses and their connectivity to
pre-synapses also needs to be detected correctly. In Fig. 1,
the texture difference (i.e., domain gap) between sample
3 and sample 2 is larger than that between sample 3 and
sample 1. As such, volumes from sample 2 are more
challenging, resulting in lower detection accuracy for all
methods. According to Table II, III, and IV, the performance
of the baseline method on sample 1 and sample 2 is much
lower than that on sample 3, which fully reflects the challenges
brought by the out-of-domain data caused by cross-sample
variations. On the other hand, the leading methods developed
by challenge participants show improved performance on
sample 1 and sample 2 with the help of various domain
adaptation algorithms, effectively alleviating the domain shift
problem.

Challenge rankings can be unstable depending on how
they are computed, therefore, inspired by [65], we perform
a ranking uncertainty analysis by bootstrapping the challenge

TABLE II
RESULTS COMBINING PRE- AND POST-SYNAPSE DETECTION.

THE NUMBERS SHOWN ARE F1-SCORES

TABLE III
RESULTS OF PRE-SYNAPSE DETECTION. THE NUMBERS

SHOWN ARE F1-SCORES

TABLE IV
RESULTS OF POST-SYNAPSE DETECTION. THE NUMBERS

SHOWN ARE F1-SCORES

results using Rankings Reloaded toolkit.6 Fig. 9 shows the
results of the ranking uncertainty analysis. It suggests that,
in post-synapse detection (Fig. 9-c), the uncertainty of ranking
is slightly larger, but in general, the rankings of the four
methods are stable in all three analyses.

B. Qualitative Results
Fig. 10 shows the qualitative results of pre- and post-synapse

detection in sample 1, sample 2, and sample 3, from the first-
place team’s method. The results are consistent with what
we have observed in Section IV-A. The detection of pre-
synapses is generally easier than that of post-synapses since
the proportion of true positive (magenta) cases in pre-synapse
detection results is significantly larger. Results from sample
1 and sample 2 are worse than those of sample 3 due to the
existing domain gaps. Although the majority of pre-synapses

6https://www.rankings-reloaded.de/
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Fig. 8. The framework proposed by Team melony. A pre-trained 3D VGG-16 model is used to extract multi-scale features, which are then fused
through a Feature Pyramid Network (FPN) [63] module to cope with synapses with different scales. The classification maps of pre-synapses and
post-synapses are generated through several simple convolutions.

Fig. 9. Ranking uncertainty analysis. Methods are color-coded, and the area of each blob at position (method i, rank j) is proportional to the relative
frequency method i achieved rank j across b = 1000 bootstrap samples. Black cross: the median rank for each method. Black lines: 95% bootstrap
intervals across bootstrap samples.

in all three samples are accurately identified, the domain gaps
appear to have a more detrimental effect on post-synapse
detection based on the proportion of false negative (yellow)
cases. This suggests that the inherent domain differences
make it considerably challenging to detect post-synapses in
sample 1 and 2. Specifically, in pre-synapse detection, false
negative cases are often observed in locations that have
ambiguous textures, and false positive cases are often observed
in locations that resemble pre-synaptic regions. In post-
synapse detection, false negative cases usually come from
pre-synapses that have too many connected post-synapses,
making it difficult for the model to cover all of them. False
positive cases usually come from several closely located post-
synapses that are wrongly assigned to only one pre-synapse
but actually belong to two or more pre-synapses.

V. DISCUSSION

A. One-Step Approach v.s. Two-Step Approach
Upon reviewing the methods for synapse detection proposed

in the challenge and in previous literature, we could roughly
divide them into two categories: one-step approaches and
two-step approaches. A one-step approach refers to detecting
pre- and post-synapses in one inference step while a two-
step approach refers to detecting pre-synapses first and then

detecting post-synapses for each pre-synapse during inference.
In the challenge dataset, there are particular occasions when
a post-synapse is connected to two pre-synapses, especially
among mushroom bodies. One-step approaches may make
mistakes on such occasions while two-step approaches are
not negatively affected since they deal with the pre-synapses
one by one. However, one-step approaches generally have
the advantage of larger throughput and better computational
efficiency because there are redundant overlaps of image
volumes when sampling each detected pre-synapse for post-
synapse detection in two-step approaches. Therefore, when
making the choice between these two categories, one may need
to consider the density of synapses in the data, i.e., choose
two-step approaches when the density is low, and vice versa.

B. Limitations of the Challenge Design
We have identified a number of limitations that should

be addressed in future studies. First, due to resource
constraints, participants performed the algorithms’ training
offline. Additional data may potentially be used by certain
teams that are not accessible to others and thus could introduce
bias when comparing performance against each team. Enabling
docker-based training of models directly on the challenge
platform would be desirable. Second, the number of samples

Authorized licensed use limited to: Boston College. Downloaded on March 04,2025 at 01:37:17 UTC from IEEE Xplore.  Restrictions apply. 



3728 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 11, NOVEMBER 2024

Fig. 10. Qualitative results of pre- and post-synapse detection in sample 1, sample 2, and sample 3, from the first-place team’s method. Dots and
lines: magenta-true positive, yellow-false negative, and cyan-false positive. Scale bar: 0.5 µm.

in the dataset, although already larger than that of the previous
challenge CREMI, is still limited to some extent, preventing
the developed algorithms from achieving higher accuracy.
It would be possible to open source more data samples for
the challenge but this is subject to the availability of resources
needed to provide manual annotations. Third, a certain level of
uncertainty exists in the ground truth annotations as annotators
need to decide the exact point location even though we
provided a guidance for annotators. Such fuzziness in point
annotations could make the learning process harder than the
previous segmentation mask style annotations. In the future,
a desirable algorithm that emerges from this challenge should
be able to incorporate the fuzziness into its modeling process.
Last, this challenge considers the problem of out-of-domain
generalization across different brain samples in microwasp.
A more challenging and interesting research theme could be
considering the generalization problem across species beyond
microwasp, e.g., extending the dataset to include brain regions
from fly, mouse, etc.

C. Impact on Future Research
In the WASPSYN challenge, different domain adaptation

methods (either borrowed from the natural image domain

or newly developed) are evaluated and compared on the
synapse detection task, making it possible to identify methods
that are superior when applied to connectomics research
and helping explore novel ways to reduce the number of
manual annotations needed to train a reasonably good machine
learning model. Besides, this challenge also demonstrates that
providing only point annotations as labels is also plausible for
training machine learning models to detect synapses, a dataset
preparation strategy that is more labor-efficient compared to
producing segmentation mask style annotations (i.e., voxel
painting of cleft regions). Although leading methods have
demonstrated effective improvements, the scores are still not
satisfactory, and the challenge of domain adaptation with
weakly annotated data is still not well-solved. Therefore, the
challenge website will continue to run, and we hope that some
revolutionary algorithms will stand out in the future.

We believe that future research can be explored in the
following aspects: 1) Models. Recent years have witnessed the
huge success of foundation models. For example, SAM [66]
is a foundation model for image segmentation and has been
adapted for various domains. Utilizing and adapting existing
powerful foundation models for domain adaptive synapse
detection could be a promising direction. 2) Algorithms.
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Developing new domain adaption algorithms is important as
one of the biggest challenges for the WASPSYN benchmark
is the domain gap. Studying more advanced domain adaption
methods [67], [68] and applying them to the WASPSYN
challenge would naturally bring performance improvements.
3) Data. The quality and size of data largely determine the
performance of the model. While collecting and annotating
real data is time-consuming and labor-intensive, high-quality
data can be greatly expanded by synthesizing data. Recent
research [69] has demonstrated the feasibility of using
diffusion models as data engines.

D. Impact on Connectomics Community
After pre-processing each image volume and producing

ground truth annotations for the training set, the challenge
data is made publicly available and has facilitated scientific
research in related fields. The starter code and baseline method
are provided to help participants dive into the problem more
easily. Besides, the online evaluation ensures that algorithms
developed by participants are compared fairly against each
other. Through these efforts, wide participation is achieved
from research groups around the world.

VI. CONCLUSION

The WASPSYN challenge at ISBI 2023 is the first to
evaluate a wide range of methods applied to the domain
adaptive synapse detection problem in microwasp brain
connectomes. The main goal is to provide a platform and a
standardized benchmark for comparison of synapse detection
methods under the out-of-domain setting. We establish a
low entry barrier by producing electron microscopy volumes
with manual annotations and enabling automatic evaluation
on CodaLab platform. The dataset contains 14 image
volumes from 3 different microwasp brain samples, exhibiting
significant domain difference that is suitable for evaluating the
generalization ability of participants’ algorithms. A baseline
using a two-step approach is also proposed to serve as a
reference method for participants. Additionally, in this paper,
we also discuss the quantitative and qualitative results of the
challenge entries as well as the limitations and potential impact
of the challenge itself. It is our hope that the WASPSYN
challenge can help researchers in connectmoics field take a
step further in disentangling the wiring diagram of the brain.
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