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Abstract— 3D instance segmentation for unlabeled imag-
ing modalities is a challenging but essential task as col-
lecting expert annotation can be expensive and time-
consuming. Existing works segment a new modality by
either deploying pre-trained models optimized on diverse
training data or sequentially conducting image transla-
tion and segmentation with two relatively independent
networks. In this work, we propose a novel Cyclic Seg-
mentation Generative Adversarial Network (CySGAN) that
conducts image translation and instance segmentation si-
multaneously using a unified network with weight shar-
ing. Since the image translation layer can be removed at
inference time, our proposed model does not introduce
additional computational cost upon a standard segmen-
tation model. For optimizing CySGAN, besides the Cycle-
GAN losses for image translation and supervised losses
for the annotated source domain, we also utilize self-
supervised and segmentation-based adversarial objectives
to enhance the model performance by leveraging unlabeled
target domain images. We benchmark our approach on the
task of 3D neuronal nuclei segmentation with annotated
electron microscopy (EM) images and unlabeled expan-
sion microscopy (ExM) data. The proposed CySGAN out-
performs pre-trained generalist models, feature-level do-
main adaptation models, and the baselines that conduct
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image translation and segmentation sequentially. Our im-
plementation and the newly collected, densely annotated
ExM zebrafish brain nuclei dataset, named NucExM, are
publicly available at https://connectomics-bazaar.
github.io/proj/CySGAN/index.html.

Index Terms— 3D Instance Segmentation, Unsupervised
Domain Adaptation, Expansion Microscopy (ExM), Electron
Microscopy (EM), Zebrafish, Neuronal Nuclei.

I. INTRODUCTION

THE 3D Instance segmentation of cell nuclei is an essential
topic attracting both biomedical and computer vision

researchers [1]–[5]. Supervised deep learning with in-domain
annotations (e.g., U-Net [6], [7]) has become the dominant
methodology for mainstream imaging modalities. However,
such an approach is less applicable for novel imaging modal-
ities, e.g., expansion microscopy (ExM) [8]1, due to the lack
of existing labels and the high annotation costs for newly col-
lected data. This work focuses on segmenting a new imaging
modality without any in-domain annotation (Fig. 1a).

Two common approaches try to overcome the challenges
by leveraging existing labels from mainstream domains. One
approach is to train a supervised model on diverse datasets
(i.e., a generalist model) and apply it directly to the new
domain [3], [4]. However, when the domain gap becomes too
large, generalist models can produce unsatisfactory predictions
without in-domain finetuning that requires new training labels.
The other approach, known as unsupervised domain adap-
tation, usually involves unpaired image-to-image translation
models like CycleGAN [9] and segments a new domain with
a two-stage pipeline. The first stage translates the source
images to match the target domain distribution, aiming to
be indistinguishable from the target images while keeping
the source structures. The second stage pairs the translated
images and corresponding ground-truth labels in the source
domain to train a supervised model. The optimized model can
then segment real images in the target domain2 (Fig. 1b). The
limitation of this sequential pipeline is that the segmentation
depends on a translation model optimized regardless of the end

1Expansion microscopy [8] alleviates the resolution limitation in optical
microscopy by physically expanding the tissues.

2The opposite way, which transfers the target domain images to the source
domain and applies a supervised model trained on the source data, is also
reasonable. However, the community uses it less often as this direction
requires both the translation and segmentation models at inference time.
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Fig. 1. Overview of the task and methods. (a) We aim to segment 3D instances in a completely unlabeled target domain (IY ) by leveraging
the images (IX ) and masks (SX ) in the source domain (i.e., unsupervised domain adaptation). Instead of (b) conducting image translation
(e.g., via CycleGAN [9]) and instance segmentation as two separate steps, we propose (c) Cyclic Segmentation GAN (CySGAN) to unify the two
functionalities using weight sharing, which is optimized with both image translation as well as supervised and semi-supervised segmentation losses.

task. Although recent works improve it by jointly training the
translation and segmentation models [10]–[13], the two rela-
tively independent networks still make the pipeline complex.

In this work, we propose a Cyclic Segmentation Generative
Adversarial Network (CySGAN) that unifies image translation
and segmentation to tackle nuclei instance segmentation in
an completely unlabeled modality (Fig. 1c). For both the
source and target domains, we train a single 3D U-Net [7]
that takes only images as input but outputs both segmentation
and translated images simultaneously3. The segmentation and
translation components thus share most of the network weights
except for a single output layer. Such a design has two
main advantages. First, it decreases the pipeline complexity
as we can simply extend a segmentation model with a single
additional output channel for image translation to realize
domain-adaptive segmentation. Second, the shared backbone
implicitly increases the consistency between translated images
and predicted segmentation as they share the same input
features before the task specific layer. To our knowledge,
similar frameworks have been explored only for 2D semantic
segmentation (e.g., SUSAN [14]) but not 3D instance segmen-
tation that assigns each object a unique index. Furthermore,
SUSAN [14] is trained with image translation and supervised
segmentation losses. Our CySGAN is additionally optimized
with structural consistency and segmentation-based adversarial
losses to better leverage the unlabeled domain images, con-
necting ideas from semi-supervised image segmentation.

Moreover, we propose a novel cycle-consistency strategy
with data augmentations to improve the performance and
robustness of CySGAN. Previous works show that training
transformations like blurry, noisy, and missing regions can
significantly improve 3D instance segmentation models [5],
[15]. However, the image discriminator can easily distinguish
between synthesized and real images if the augmentations
remain in the translated ones, breaking the balance in GAN
training. To tackle this, we proposed to enforce the cycle
consistency [9] between the reconstructed images and the
clean images instead of the augmented ones, enabling the
model to restore corrupted regions during the translation
process. This strategy acts as a regularization to improve the
spatial awareness of the 3D model as it learns to restore and

3The source-to-target generator is optimized jointly during training but not
needed at inference time.

segment augmented regions using the surrounding context.
To benchmark CySGAN, we curated and annotated two

expansion microscopy (ExM) image volumes from a zebrafish
brain tissue with dense neuronal nuclei (IY in Fig. 1a). This
dataset is called NucExM, with a total of 18.4K instances.
These two volumes are complemented by a publicly available
and labeled electron microscopy (EM) dataset (IX and SX

in Fig. 1a). Without any annotation for the ExM domain,
our CySGAN outperforms generalist models pretrained on
diverse datasets, feature-level adaptation models, and the
methods that conduct translation and segmentation using two
separate networks. We publicly released our code and the new
NucExM dataset at https://connectomics-bazaar.
github.io/proj/CySGAN/index.html.

Contributions We present CySGAN, a novel 3D domain
adaptive instance segmentation method that segments instances
in an unlabeled domain using a multi-task network. We
introduce an augmentation-restoration cycle-consistency strat-
egy that significantly enhances CySGAN’s spatial awareness
and robustness without disrupting the generator-discriminator
balance. Furthermore, we contribute a new densely annotated
ExM zebrafish brain nuclei dataset, NucExM, as well as the
training and inference code, to the research community.

II. RELATED WORKS

A. Unpaired Image-to-Image Translation

In biomedical domains, paired images from different imag-
ing modalities are usually expensive or even infeasible to
obtain. Therefore, unpaired image-to-image translation [9],
[16] based on Generative Adversarial Networks (GAN) [17]
becomes a sensible methodology to transfer source images
to the target distribution. An exemplary framework usually
consists of a generator that maps the source images to the
target domain and a discriminator that decides whether an
input image is from the real target distribution or synthe-
sized. The generator is optimized with the gradients of the
GAN loss back-propagated through the discriminator. Cycle-
GAN [9] achieves impressive performance by ensuring cycle
consistency when transferring translated images back to the
source domain using a pair of symmetric generators. Further
improvements include shared high-level layers [18] and latent
space alignment [10]. We refer readers to the survey by Pang
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et al. [19] for a more detailed discussion of image-to-image
translation literature. Specifically, our work combines image
translation with segmentation models to tackle unlabeled
modalities, extending a standard 3D segmentation with one
additional output channel optimized with image translation
objectives to adapt to the target distributions. Our proposed
CySGAN simplifies existing frameworks that conduct image
translation and segmentation using two separate networks.

B. Instance Segmentation of 3D Microscopy

3D instance segmentation from microscopy images is chal-
lenging due to the dense distribution of objects and unavoid-
able physical limitations in imaging (e.g., data is frequently
anisotropic with uneven resolution among different axes).
Recent learning-based approaches tackle these challenges by
first optimizing CNN-based models to predict representa-
tions calculated from the instance masks, including object
boundary [6], [20], [21], affinity map [15], [22], star-convex
distance [4], flow-field [3] and the combination of multiple
representations [5]. Watershed transform [23], [24] and graph
partition [25] can then be applied to convert the predicted
representations into instance masks. However, most existing
works train the segmentation models in a supervised learning
manner using in-domain annotations, which becomes infeasi-
ble considering the cost of acquiring expert annotations for
new modalities. Our work focuses on unifying segmentation
approaches with image translation to segment instances in new
domains via unsupervised domain adaptation. At inference
time, the image-translation component of CySGAN can be
removed, which means CySGAN does not increase the de-
ployment cost upon a standard 3D segmentation model.

C. Domain Adaptive Segmentation

We focus on unsupervised domain adaptation with unla-
beled target data. Existing approaches can be categorized into
appearance-level and feature-level adaptation methods.

For appearance-level adaptation, utilizing unsupervised im-
age translation is a practical methodology. Chartsias et al. [26]
designed a two-stage framework that first translates source
images to the unlabeled domain using CycleGAN [9] and then
trains a separate segmentation model using the synthesized
images and source labels. However, since the two modules are
optimized independently, the limited awareness of the transla-
tion network to the downstream segmentation task can restrict
the performance. CyCADA [10], SIFA [13], EssNet [11] and
SECGAN [12] improve the sequential model by jointly opti-
mizing the translation and segmentation networks. However,
using two separate networks increases the system complexity
in training and deployment. The authors of CyCADA [10],
for example, stated that although the model is theoretically
end-to-end trainable, they need to train it in stages as it is too
memory-intensive to optimize the full objective. Different from
the mentioned works, we unify image translation and segmen-
tation into a single model to significantly reduce the system
complexity. Since the translation and segmentation layers base
their predictions on the same high-level features, the CySGAN

model enforces the consistency between translated images and
segmentation maps from an architectural perspective.

Feature-level adaptation methods commonly optimize a
model for two (or more) domains so that the outputs and high-
level features from different domains are indistinguishable
in distribution. For the unlabeled domain, adversarial losses
are usually applied to enforce the alignment. For example,
SIFA [13] uses GAN losses to minimize the gap between the
segmentation predictions from the real and synthesized target-
domain images. Tsai et al. [27] designs a model directly taking
the source and target images as inputs and applying adversarial
losses to align the high-level feature maps. Following existing
works, we implement a feature-level adaptation model for
3D instance segmentation and show that our CySGAN and
appearance-level adaptation models can achieve significantly
better performance in neuronal nuclei segmentation.

To our best knowledge, the only existing work that explores
joint translation and segmentation with weight sharing is
SUSAN [14], but our work differs from it in two main
aspects. First, SUSAN and most works mentioned above are
for 2D semantic segmentation, while our work focuses on the
more challenging 3D instance segmentation. Second, SUSAN
only applies supervised segmentation losses to the annotated
domain, while our CySGAN leverages semi-supervised losses
for the unlabeled domain in the absence of ground-truth labels.

III. METHOD

In this section, we first give an overview of the CySGAN
framework (Sec. III-A). We then present the image translation
(Sec. III-B) and segmentation (Sec. III-C) objectives to opti-
mize the system, as well as our implementation (Sec. III-D).

A. The CySGAN Framework

Suppose we have an annotated source domain X =
(IX , SX) where IX and SX denote the images and paired seg-
mentation labels, respectively. For an unlabeled target domain
Y with only images IY , the goal is to generate the instance
segmentation SY without acquiring any manual annotations
in Y . One straightforward approach is to use some domain
adaptation method F to synthesize images IY ′ = F (IX) that
are indistinguishable from the distribution of IY but keep the
instance structure in SX . Then a supervised model can be
optimized using (IY ′ , SX) pairs, which predicts SY from IY
at inference time (Fig. 1b).

Sequentially conducting the translation and segmentation
suffers from multiple weaknesses. First, the translation model
is not designed with an end task in mind and can propagate
errors to the second step. Second, the translation model does
not benefit from the powerful structural guidance that instance
segmentation can impose upon it. Third, two separate modules
make the system complicated in training and deployment.
Thus, we propose a framework that shares weights between
the translation and instance segmentation. Our framework uses
two generators - one per domain - that output both translated
images and segmentation simultaneously (Fig. 1c):

F : IX → (IY , SX) G : IY → (IX , SY ) (1)
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Fig. 2. Architecture details of CySGAN. Given an image sampled from IY , the generator G predicts both the transferred image in IX and the BCD
segmentation representations SY . Then the generator F takes only the translated image as input and predicts both the reconstructed image and
segmentation representations. Specifically, BCD stands for “binary foreground mask, “contour map,” and “distance transform map.” We visualize the
predicted BCD representations in the dashed yellow boxes. The two generators have exactly the same architecture, but the weights are not shared
as they are optimized to translate images in different domains. Only the generator G is needed to segment IY images at inference time (the output
channel for translation can also be removed).

We denote the proposed framework as the cyclic segmentation
GAN (CySGAN). Specifically, for an image xi ∼ IX , we
have [ŷi, x̂s] = F (xi), where ŷi is the synthesized image,
x̂s contains the predicted instance representations, and [ŷi, x̂s]
is their concatenation along the channel dimension. For the
clarity in the following formulations, we also denote ŷi =
F (xi)[I] and x̂s = F (xi)[S]. Note that G(F (xi)) is no longer
a valid expression as both models take only an image as input
but output the translated image and segmentation.

Fig. 2 shows the architecture of our CySGAN framework.
For the segmentation part, each of the two generators yields
the three instance representations binary foreground mask (B),
instance contour map (C), and signed distance transform (D)
from which we derive the instance masks (detailed in Sec.III-
C). Therefore, a single generator simultaneously outputs the
synthesized image and the three instance representations as
four different output channels. In particular, ŷi = F (xi)[I] has
a single channel while x̂s = F (xi)[S] has three channels, but
with the same spatial dimensions (the same for G). Unlike
previous works that sequentially conduct image translation
and segmentation, our design decreases the system complexity.
Moreover, since the translation and segmentation modules
base their predictions on the same high-level features in the
generator networks, our model implicitly increases the struc-
tural consistency between synthesized images and predicted
segmentation maps from an architectural perspective.

At inference time, only the generator G is required to
segment IY . Besides, the output layer for image translation
can be simply removed without influencing the prediction of
the segmentation maps. Therefore, our CySGAN model does
not introduce any additional computational cost in deployment.

In the following parts, we discuss how to effectively opti-
mize CySGAN with multiple objectives and data augmenta-
tions. Different from standard unsupervised image translation,
the two domains are asymmetric, as X is labeled, while Y is
unlabeled. We thus apply similar image translation losses but
unique segmentation losses for X and Y domains.

B. Image Translation Losses

Given an input image xi ∼ IX , we can denote F as the
forward generator and G as the backward generator (Eqn. 1).
Since paired IX and IY are difficult or even infeasible to
obtain, F is usually optimized using the adversarial loss
so that the real and synthesized images gradually become
indistinguishable in terms of distribution:

LGAN (F,DI
Y ) = logDI

Y (yi) + log(1−DI
Y (ŷi)) (2)

where DI
Y is the IY discriminator, while yi and ŷi are true and

synthesized images (ŷi = F (xi)[I]), respectively. Following
CycleGAN [9], we additionally use a backward generator
G and discriminator DI

X for IX to symmetrically optimize
LGAN (G,DI

X) for translating IY to IX , as well as enforcing
the cycle-consistency loss for the images in both domains:

Lcyc(F,G) = ∥G(ŷi)[I] − xi∥1 + ∥F (x̂i)[I] − yi∥1 (3)

The GAN and cyclic losses enable the models to transfer
images between IX and IY distributions. However, the train-
ing of the original binary cross-entropy GAN loss (Eqn. 2)
can be unstable. Therefore, following the official CycleGAN
implementation, we instead optimize the LSGAN [28] loss:

LLSGAN (F,DI
Y ) =

(
DI

Y (yi)− 1
)2

+
(
DI

Y (ŷi) + 1
)2

(4)

This loss formulation has been shown to prevent vanishing
gradient and smooth the training process. A symmetric adver-
sarial loss is applied to optimize G. In our proposed CySGAN,
the image translation losses do not affect the output layers for
the segmentation maps, but it does change the backbone shared
by both translation and segmentation modules.

C. Instance Segmentation Losses

1) Labeled Source Domain: Instance segmentation ap-
proaches for microscopy images [3]–[5], [21] usually pre-
dict instance representations computed from the permutation-
invariant labels and then apply a decoding algorithm to yield
the masks. In this work, we follow U3D-BCD [5] that predicts
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Fig. 3. Different segmentation losses for two domains. (a) For an annotated image in X, we compute the supervised losses of predicted
segmentation representations against the label. (b) For an unlabeled image in Y , we enforce structural consistency between predicted
representations (as the underlying structures should be shared) and also segmentation-based adversarial losses to improve the quality of
predictions in the absence of paired labels.

the binary foreground mask (B), instance contour map (C),
and signed distance transform (D) as three output channels
using a 3D U-Net [7], which are decoded by a marker-
controlled watershed (MW) algorithm. The B and C channels
are optimized with the binary cross-entropy loss (BCE), while
D is regressed with the mean squared error (MSE). Given an
image-label pair (xi, xs) sampled from (IX , SX), the loss is

Lseg(F ) = Lbce

(
F (xi)

B
[S], x

B
s

)
+ Lbce

(
F (xi)

C
[S], x

C
s

)
+∥F (xi)

D
[S] − xD

s ∥22
(5)

where xs = [xB
s , x

C
s , x

D
s ] is the concatenation of the three

representations. For the supervised direction, the segmentation
loss Lseg(F ) of the forward generator and segmentation
loss Lseg(G) (based on the synthesized ŷi) of the backward
generator are optimized by directly comparing x̂s and ŷs with
xs from SX ( 1⃝ and 2⃝ in Fig. 3a).

The loss Lseg(G) effectively trains G in a supervised
manner to predict the segmentation representations. Moreover,
this design is not restricted to a particular set of instance
representations and can be easily modified to incorporate other
methods4. In the next part, we present a set of novel losses to
better leverage the unlabeled domain Y .

2) Unlabeled Target Domain: Since Y is unlabeled, it is
impossible to apply the supervised losses that we applied to
X . To further improve segmentation quality, we introduce a
structural consistency loss between the segmentation outputs
of both generators, ŷs and x̂s ( 1⃝ Fig. 3b), as they should share
identical underlying structures even if the inputs are from two
modalities. This loss Lsc(F,B) is formulated as

Lsc(F,G) = ∥G(yi)[S] − F (G(yi)[I])[S]∥1 (6)

On the other hand, since we have unpaired instance segmenta-
tion masks SX of neuronal nuclei in a different modality, we
also add structure-based adversarial losses to the predictions
( 2⃝ and 3⃝ in Fig. 3b) to enforce their distributional simi-
larity with SX , which are denoted as LLSGAN (G,DS

X) and
LLSGAN (F,DS

X) (see the LSGAN formulation in Eqn. 4).
Please note that this loss requires similar dimensions for the
instances in both datasets (i.e., the resolutions have to match),

4For example, SUSAN [14] applies the supervised segmentation losses for
2D semantic masks with pixel-wise class annotations.

and we will elaborate our preprocessing steps in Sec. IV.
Specifically, the discriminator DS

X takes the concatenation of
all three representations to emphasize the correlation between
them, as the representations are calculated from the same
instance masks. This design also avoids using three inde-
pendent discriminators that increase the system complexity.
The architecture of DS

X is almost identical to the image
discriminators except for the number of input channels. In
summary, the structural consistency loss and segmentation-
based adversarial losses provided additional supervision in the
absence of paired labels for IY .

Our method is connected to semi-supervised learning as
we incorporate unlabeled images in optimization using losses
without paired labels. We can also choose other semi-
supervised objectives, e.g., augmentation consistency [29],
when the model takes images in the unlabeled domain as
inputs. Our work emphasizes the concept of leveraging unla-
beled images in a unified translation-segmentation framework,
while the specific design choices can vary.

D. Implementation

1) Full Objective: The full objective (L) of CySGAN is the
sum of losses in Sec. III-B and III-C, which is

L = LGAN (F,DI
Y ) + LGAN (G,DI

X) + Lcyc(F,G)︸ ︷︷ ︸
image-to-image translation

+Lseg(F ) + Lseg(G)︸ ︷︷ ︸
supervised segmentation

+Lsc(F,G) + LGAN (G,DS
X) + LGAN (F,DS

X)︸ ︷︷ ︸
semi-supervised segmentation

(7)

We assign a uniform weight for all losses without tweaking.
In the ablation studies, we also test a CySGAN model with-
out the semi-supervised segmentation loss to demonstrate its
effectiveness to the framework.

2) Augmentation-Aware Cycle Consistency: The U3D-
BCD [5] model uses multiple training augmentations like
random missing, blurry and noisy regions (Fig. 4a). We keep
them in CySGAN for better segmentation quality. However,
the image discriminator can easily distinguish synthesized
images from real ones if the augmentations are clearly no-
ticeable in the translated ones, breaking the balance in GAN
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Fig. 4. Restore augmented regions with an adapted cycle-consistency strategy. We show four consecutive slices of (a) augmented real IY input,
(b) synthesized IX volume, (c) reconstructed IY volume and (d) real IY volume w/o augmentations. By forcing the cycle consistency of (c) to (d),
the model learns to restore corrupted regions with 3D context.

Fig. 5. Visualization of the NucExM dataset. We sample a sub-volume
of size (1024, 1024, 100) from the V1 volume of NucExM. (Left) The
expansion microscopy (ExM) image volume visualized using Napari.
(Right) The corresponding 3D segmentation masks visualized using
Neuroglancer.

training. Therefore, we propose an upgraded cycle consistency
(Eqn. 3) by streaming the training images for X and Y in
both augmented and clean (unaugmented) forms. As shown
in Fig. 4 (each subfigure shows consecutive slices of a 3D
volume), G transfers augmented yi to x̂i, and F reconstructs
x̂i to ŷi. Instead of calculating Lcyc(F,G) of ŷi to yi, we
enforce its similarity to the clean y∗i (Fig. 4d). By using the
augmentation-aware cycle consistency strategy, both genera-
tors learn to restore corrupted regions using 3D context5 in
addition to image translation. We show in the ablation studies
that this strategy has a significant impact on the domain-
adaptive segmentation performance.

3) Network Details and Optimization: We use 3D U-Nets [7]
for F and G. They have identical architectures, but the pa-
rameters are not shared, which is similar to CycleGAN. Each
network has one input channel and four output channels for
the translated image and BCD segmentation representations
(Fig. 2). For the GAN objectives, we use 3D convolutional
discriminators, where the image discriminators DI

X and DI
Y

have a single input channel for the gray-scale images, while
the segmentation-based discriminators DS

X has three input
channels for the BCD representations. Each discriminator has

5The strong missing-region augmentation is not applied to successive
sections to facilitate using 3D context in translation and segmentation.

five layers, where each one consists of a strided convolution,
a batch normalization, and a non-linear activation. Following
PatchGAN [16], the final layer outputs a single-channel feature
map representing the realness of corresponding input patches.
The idea is to evaluate the generator’s performance at the level
of local image patches rather than applying a coarse global
penalty. As discussed in Sec. III-B, we optimize the LSGAN
objective (Eqn. 4) instead of the BCE GAN loss (Eqn. 2) for
training stability. When calculating the segmentation losses,
we detach the synthesized image to avoid the segmentation
objectives affecting the image translation results.

We train the CySGAN model for 106 iterations using
the AdamW [30] optimizer with an initial learning rate of
2 × 10−3 (decreased with cosine annealing) and batch size
of 8 using 4 NVIDIA V100 GPUs. Our implementation of
the proposed CySGAN framework is based on the PyTorch
Connectomics [31] open-source framework.

IV. DATASETS

As discussed in related works, existing domain-adaptive
segmentation models are mainly developed for 2D segmenta-
tion and semantic segmentation. To alleviate the lack of bench-
mark datasets for 3D domain-adaptive instance segmentation
in microscopy image analysis, we also release a fully annotated
dataset with dense 3D neuronal nuclei instances (Fig. 5).

1) NucExM Dataset (Target): We curated the saturated nu-
clei segmentation annotation for two expansion microscopy
(ExM) [8] volumes by two neuroscience experts from a day 7
post-fertilization (dpf) zebrafish brain6, imaged with confocal
microscopy. These volumes have an anisotropic resolution of
0.325×0.325×2.5 µm in (x, y, z) order, with an approximate
tissue expansion factor of 7.0. Thus the effective resolution
becomes 0.046 × 0.046 × 0.357 µm. The two volumes are
of size 2048×2048×255 voxels with 9.6K and 8.8K nuclei,
respectively (Table I). We downsample the volumes by ×4
along x and y axes to 512× 512× 255 to save computational
cost during training and inference.

6All procedures involving animals at the Massachusetts Institute of Tech-
nology (MIT) were conducted in accordance with the US National Institutes
of Health Guide for the Care and Use of Laboratory Animals and approved
by the MIT Committee on Animal Care. The IACUC protocol number is
1221-100-24, which was approved on 12/23/2021.
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(a) Instance Size (b) Nearest-Neighbor Distance (c) Voxel Intensity

Fig. 6. Statistics of the source (EM) and target (ExM) datasets. We show the distribution of (a) instance size (in terms of voxels) and (b) nearest-
neighbor distance between nuclei centers. The density plots are normalized by the total number of instances in each volume. We also show (c)
the voxel intensity distribution in object (foreground) and non-object (background) regions for both volumes. The domain gap is characterized by
different intensity distributions and contrast.

TABLE I
NUCEXM DATASET METADATA. WE CURATED AND DENSELY ANNOTATED A neuronal nuclei SEGMENTATION DATASET WITH TWO EXM VOLUMES OF

ZEBRAFISH. THE TISSUE WAS EXPANDED BY ABOUT 7× TO INCREASE RESOLUTION.

Sample #Volumes Volume Size (each) Resolution (µm) Ex. Ratio #Instances

Zebrafish Brain 2 2048×2048×255 0.325×0.325×2.5 7.0 9.6K+8.8K

2) Source Dataset: We use the NucMM-Z electron mi-
croscopy (EM) volume from the NucMM dataset [5] as the
source data (IX and SX in Fig. 1a). The original NucMM-
Z covers nearly a whole zebrafish brain at a resolution of
0.48× 0.48× 0.48 µm. Considering the different resolutions
of the source and target datasets, we crop a 200× 200× 255
subvolume from NucMM-Z and upsample it to 512×512×255
to (roughly) match the resolution. The processed volume con-
tains 12K neuronal nuclei instances. We also apply Gaussian
filtering and thresholding of the instance masks after nearest-
neighbor upsampling to smooth the boundaries.

3) Datasets Comparison: Fig. 6 shows the comparison
between the source (EM) and target (ExM) datasets. After
downsampling of the target dataset and upsampling of the
source dataset, the instance size (Fig. 6a) and nearest-neighbor
distance between nuclei centers (Fig. 6b) roughly match,
which is expected to help the model learn to segment 3D
neuronal nuclei instances in a domain-adaptive setting. The
domain gap is mainly characterized by the different intensity
and contrast of object and non-object voxels (Fig. 6c). We
show in experiments that the difference in appearance can
hardly be solved by traditional appearance-level adaptation
approaches like histogram matching.

4) Evaluation Metric: Following common practice in in-
stance segmentation [32], [33], we choose average preci-
sion (AP) as the evaluation metric. Specifically, for our 3D
volumetric data, we choose AP-50 (i.e., AP with an IoU
threshold of 0.5) and use the existing public implementation
with improved efficiency for 3D volumes [21].

V. EXPERIMENTS

A. Methods in Comparison

We compare CySGAN with three types of models tar-
geting the segmentation of a new domain without any in-
domain annotation, including generalist models, appearance-
level adaptation models, and feature-level adaptation models.

1) Generalist models: We compare with Cellpose [3] and
StarDist [4] models using their official implementation. Cell-
pose predicts the flow-field representations for instances using
neural networks, while StarDist predicts 3D star-convex poly-
hedra representations. Those models are pretrained on various
training datasets covering different imaging modalities and
species (e.g., the Cellpose model was pretrained on datasets
with over 70k segmented objects). To improve the fairness
in performance comparison, we conducted hyper-parameter
tuning of the algorithms (e.g., the estimated diameters of the
objects) to ensure the quality of the predictions.

2) Appearance-level adaptation: Appearance-level adapta-
tion approaches are the models that first translate images
to the target appearance for training a segmentation model.
Since existing approaches are mainly developed for 2D se-
mantic segmentation [10], [11], [13] but rarely explore 3D
instance segmentation, we implemented two kinds of baseline
models that conduct translation and 3D instance segmentation
sequentially. Specifically, we test both histogram matching (a
traditional method) and CycleGAN [9] (a deep learning-based
method) as the translation module. We use U3D-BCD [5] for
segmentation, which is consistent with the CySGAN gener-
ators but without the output channel for translated images.
Moreover, we test the IX → IY version that transfers IX to
IY ′ and trains a model in the target domain using synthesized
images, and IY → IX that transfers IY to IX′ and predicts
the segmentation using a model trained in the source. Note
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TABLE II
BENCHMARK RESULTS ON THE NUCEXM DATASET. WE COMPARE CYSGAN WITH PRETRAINED GENERALIST MODELS, FEATURE-LEVEL

ADAPTATION MODELS, AND APPEARANCE-LEVEL ADAPTATION MODELS USING THE AP-50 SCORES. EXCEPT FOR THE GENERALIST MODELS, ALL

OTHER APPROACHES USE U3D-BCD [5] FOR SEGMENTATION. Bold AND UNDERLINED NUMBERS DENOTE THE 1ST AND 2ND RESULTS.

Method Cellpose StarDist Feat. DA
Histogram + Segm CycleGAN + Segm CySGAN

(Ours)IX → IY IY → IX IX → IY IY → IX

AP-50 (V1) 0.644 0.816 0.774 0.807 0.804 0.867 0.772 0.927
AP-50 (V2) 0.765 0.875 0.795 0.826 0.816 0.881 0.777 0.934

Average 0.705 0.846 0.785 0.817 0.810 0.874 0.775 0.931

(a) Image (b) GT (c) Cellpose (d) StarDist (e) CySGAN (f) Foreground (g) Contour (h) Distance

Fig. 7. Visual comparisons of segmentation results. (a) ExM image, (b) ground-truth instances, (c) Cellpose [3], (d) StarDist [4] and (e) CySGAN
results. The red arrows highlight false negatives in Cellpose predictions and overlapping masks from StarDist. We also show (f-h) the predicted
segmentation representations of U3D-BCD used in CySGAN. Note that all the nuclei instances are 3D as shown in Fig. 5. We present representative
2D slices in this visualization to demonstrate the model performance.

that IX → IY adaptation is usually preferred as the IY →
IX approach needs to run the image translation module as
inference time, introducing additional computational cost.

3) Feature-level adaptation: Appearance-level adaptation
models described before first translates images between the
source and target domains. In comparison, feature-level do-
main adaptation models commonly map the source and target
distributions in the model embedding space. For feature-level
domain adaptation, we implemented a model sharing a similar
high-level idea as Tsai et al. [27]. Specifically, based on the
same U3D-BCD model in the appearance-level adaptation
models and our CySGAN, we apply the first GAN loss to
match the distribution of source and target predictions (i.e.,
the BCD segmentation representations) and the second GAN
loss to align the target features to the source features in
the embedding space of the 3D U-Net model. Other training
details, including data augmentations, are the same as the seg-
mentation modules in the appearance-level adaptation models.

B. Results

Since there are two volumes in the NucExM dataset, we
only use one volume (V1) to optimize the model while
running inference on V1 and V2. The inference results of

V2, therefore, demonstrate the model’s generalization ability.
Note that since the setting is unsupervised domain-adaptation,
only the ExM images of V1 are used in training without
any annotations. Table II summarizes the results. Our CyS-
GAN outperforms pretrained generalist models, feature-level
adaptation models, and appearance-level adaptation models
with either histogram matching or CycleGAN for image
translation. Specifically, CySGAN outperforms the second-
best model (CycleGAN+Segm, IX → IY ) by absolutely 5.7%,
demonstrating the effectiveness of our proposed framework.
The results also show that IX → IY versions generally
perform better than IY → IX ones in sequential models.
Please note that, although the models are not optimized on
V2, all methods generally perform better on V2 as the volume
is relatively easier to segment.

The visual results in Fig. 7 show that Cellpose’s segmenta-
tion has obvious false negatives, as highlighted by the red
arrows. From our hyperparameter search for Cellpose, we
found that the challenging contrast of the ExM data causes
missing foreground predictions. StarDist’s masks, on the other
hand, tend not to align well with instance boundaries and
overlap with each other, which are also highlighted using red
arrows. We empirically find that the strong star-convex shape
prior often overlooks other features like boundaries and thus
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TABLE III
ABLATION STUDIES OF CYSGAN. THE RESULTS SHOW OBVIOUS PERFORMANCE DEGRADATION WITHOUT USING DATA AUGMENTATIONS,

SEMI-SUPERVISED LOSSES, AND SIGNED DISTANCE MAP (D), DEMONSTRATING THE IMPORTANCE OF THOSE COMPONENTS FOR CYSGAN.

Configuration w/o Augmentation w/o Semi-sup Losses w/ BC only CySGAN (Ours)

AP-50 (V1) 0.761 (-0.166) 0.878 (-0.049) 0.843 (-0.084) 0.927

struggles with non-spherical shapes. Our CySGAN model that
combines three predicted mask representations (Fig. 7, f-h)
yields favorable 3D instance segmentation results.

C. Ablation Studies

We further validate three important design choices of
CySGAN, including the data augmentations (Fig. 4), semi-
supervised segmentation losses for the unlabeled domain
(Eq. 7), and learning the BCD [5] representation.

Table III shows the results when removing those compo-
nents from the CySGAN model on the V1 NucExM image vol-
ume. First, without data augmentations and the corresponding
cycle-consistency loss to restore corrupted regions, the perfor-
mance is significantly degraded by 16.6%. We also observe
that the model is prone to model collapse (i.e., the generator
tends to generate a single pattern during the optimization)
without data augmentations. Therefore our training strategy
can improve both the performance and robustness of the
domain-adaptive segmentation model. Second, CySGAN with-
out the semi-supervised segmentation losses (which can be re-
garded as a 3D instance segmentation version of SUSAN [14]),
the performance is decreased by 4.9% and similar to the
result of the model sequentially conducting image translation
and segmentation (CycleGAN + Segm in Table II). Third,
we also test a model that only learns the binary foreground
mask and contour map (BC), as in Wei et al. [21], without
the signed distance map in the BCD representation [5]. The
discriminator for the segmentation-based GAN loss is updated
accordingly to have two input channels without modifying
other training protocols. The BC version is worse than the
default CySGAN model by 8.4%, validating the importance
of the signed distance map in segmenting closely-touching 3D
instances. Those results demonstrate the essentiality of those
components in CySGAN and also provide informative data
points to quantify the importance of those designs.

VI. CONCLUSION

In this work, we present CySGAN, a unified domain-
adaptive segmentation framework optimized with image trans-
lation losses as well as supervised and semi-supervised in-
stance segmentation losses to tackle an unlabeled imaging
modality. CySGAN outperforms and simplifies models that
conduct translation and segmentation using separate networks.
We also publicly release the NucExM dataset as a testbed
for future domain-adaptive 3D instance segmentation models.
In our application scenario, the morphology of the source
and target objects are relatively close. Thus, important future
directions include segmenting modalities where the instance
structures differ significantly from those in the source domain.
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