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Abstract

Evaluation practices for image super-resolution (SR) use
a single-value metric, the PSNR or SSIM, to determine
model performance. This provides little insight into the
source of errors and model behavior. Therefore, it is benefi-
cial to move beyond the conventional approach and recon-
ceptualize evaluation with interpretability as our main pri-
ority. We focus on a thorough error analysis from a variety
of perspectives. Our key contribution is to leverage a texture
classifier, which enables us to assign patches with seman-
tic labels, to identify the source of SR errors both globally
and locally. We then use this to determine (a) the semantic
alignment of SR datasets, (b) how SR models perform on
each label, (c) to what extent high-resolution (HR) and SR
patches semantically correspond, and more. Through these
different angles, we are able to highlight potential pitfalls
and blindspots. Our overall investigation highlights numer-
ous unexpected insights. We hope this work serves as an
initial step for debugging blackbox SR networks.

1. Introduction
The standard practice of training and evaluating image

SR models has not changed drastically in recent years. Neu-
ral networks are optimized on the Diverse 2K (DIV2K) [40]
HR images. The models are then evaluated on five bench-
mark datasets: Set5 [3], Set14 [45], B100 [28], Ur-
ban100 [15], and Manga109 [29] with two metrics, the
peak-signal-to-noise ratio (PSNR) and the structural simi-
larity index (SSIM) [43]. This protocol ultimately shapes
the performance of the network and provides a means by
which models are compared against each other.

We note several limitations to this standard approach.
First, a single value is used to represent the model’s per-
formance on an entire dataset. There is immense variabil-
ity within a single image, let alone an entire dataset. Us-
ing only the PSNR does little to showcase the true perfor-
mance or indicate to the user where and how the model fails.
Second, because we do not have a concrete description of
the datasets, these performance results might be mislead-
ing. For example, models might perform well on patches
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Figure 1. Visual examples of errors from state-of-the-art SR mod-
els. Some reconstructions completely change the semantic mean-
ing of a patch. In the bottom left row, the digits “094” on the
airplane wing have been obscured or changed to a different digit.
Especially at inference time, it is critical to detect such mistakes.

that are not reflective of the dataset’s overall content. Addi-
tionally, the datasets have not been probed, and it is unclear
whether these are appropriate choices for the task, whether
that be training or evaluation.

Moreover, during inference time, we do not have access
to the original HR image. It has been demonstrated that neu-
ral networks make overly confident predictions [14]. Even
more troubling, SR networks frequently change the seman-
tic meaning of images. Figure 1 shows the original HR im-
age alongside several reconstructions by popular SR mod-
els. In the top left figure, the airplane wing contains the
digits “094”. However, in the reconstructions by all three
SR models, the numbers have been obscured or transformed
to a different number. Similarly, in the following image of
the bird, the orientation, width, and number of lines have
changed. These types of errors are significant as they can
alter the semantic meaning of the image. The importance of
catching and understanding such errors is compounded in
safety-critical domains such as biomedicine. For example,
Weigert et al. [44] introduced CARE networks to restore
fluorescence microscopy data. They showed that important
biological structures can appear and disappear randomly,
significantly influencing downstream analysis.

To begin to address these concerns, we take a closer look
at the error sources for each step of the SR framework. The
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Figure 2. Overview of our texture-based error analysis framework for image SR. After training a texture classification model, we can
analyze the source of SR errors from multiple perspectives, including (a) different texture distributions of datasets, (b) SR performance vs.
texture classes, and (c) texture alignment between HR and SR pairs. This approach provides insights that the PSNR/SSIM alone cannot.

guiding principle to our analysis is a human-centric one.
That is, we want to use language which is intuitive, easily
recognizable, and sufficiently expressive. Our investigation
is designed through the lens of textures and patterns. The
analysis, as described in Figure 2, is conducted by partition-
ing the natural image manifold into semantically meaning-
ful groups (e.g., grid, striped, polka-dotted, etc.).
Our experiments address the following questions:

• What type of semantic information is encoded in each
SR dataset, and to what extent do training and evalua-
tion sets align?

• Where do model failures occur relative to these seman-
tic groups? What is the nature of those images?

• Do image SR models preserve the semantic meaning
of patches?

This work results in the following main insights and con-
tributions: (1) We provide a comprehensive semantic profile
of each dataset, which is valuable to assess the diversity of
the datasets and capture the degree of semantic alignment
between them. We find that the datasets in the SR frame-
work are biased towards certain semantic groups. (2) We
verify that the semantic class label can serve as a proxy
for the difficulty of a patch. This equips us with a mean-
ingful way to think and communicate about the data. (3)
The labels the SR models perform the best on are not the
labels that reflect the content of the entire dataset. This
motivates us to consider alternative methods of evaluation
beyond PSNR. (4) For some semantic labels, there is a sur-
prisingly small benefit from deep learning, as simple bicu-
bic upsampling can even outperform deep models. (5) We
propose a simple metric to curate a training set strategically.
We demonstrate that training on only those patches of inter-
est can accelerate training, even when these patches com-
prise only 20 percent of the original training data. (6) SR
models surprisingly alter the semantic meaning of patches.

2. Related Work

Image Super-Resolution. The image SR problem is usu-
ally framed as a dense regression task with the goal of learn-

ing a functional mapping between the low-resolution (LR)
image and its high-resolution (HR) counterpart. There are
a variety of approaches to the task. Models can be residual-
based [18, 23, 47, 48], generative [11, 17, 21, 42], or even
recently, transformer-based [4, 22, 24]. The first method
that used deep learning for this task was SRCNN [8] with
a small three-layer architecture. Many works have made
several attempts at widening or deepening SR networks.
To overcome the vanishing gradient problem, EDSR [23]
adopted the residual learning approach. Due to its success
and popular code-base, the research community has focused
heavily on building upon EDSR. One way is by integrating
different channel and spatial attention mechanisms. For ex-
ample, RCAN [47], DFSA [26], SAN [7], CSNLN [32], and
NLSN [31] all incorporate an attention mechanism. SAN,
CSNLN, and NLSN models rely on non-local attention to
capture global semantic relationships and long-range fea-
ture correlations. We focus on these types of models for our
analysis. The main motivation of our work is to study the
behaviors of SR models so we can design better and more
safe architectures. For this, we turn to interpretability.
Interpretability. Machine learning interpretability is a
growing field aimed at understanding how models make
predictions (e.g., network inspection [27]). Zhou et al. [49]
proposed network dissection to quantify the interpretability
of nodes. They found that certain nodes are responsible for
specific semantic concepts like “plane” and “lamp”. Aside
from the model, one can also better understand the data.
For example, influence functions determine which training
points contributed to a specific prediction [19]. Other inter-
pretability methods [25, 35–39] consider the input instead
of the model or data. Their goal is to quantify which in-
put features affect the output, known as attribution maps.
LAM [12] adopts the idea to image SR, which identifies the
importance of each pixel in the input LR image with respect
to the SR image. Another way to explain model predictions
is by using counterfactuals [10, 41]. This is done by chang-
ing the input feature values of an instance, then analyzing
how the prediction changes. The methods discussed in this
section (except for LAM) are intended for image classifica-
tion and are not directly applicable to image SR. The main



challenge is that the SR modeling task is fundamentally dif-
ferent from image classification. We hope to bridge the
divide by conducting interpretable analysis for image SR.
To our knowledge, we are the first to analyze the data and
models with respect to semantic labels. Moreover, since we
are introducing a classifier into the SR framework, many of
the interpretability tools can potentially also be used. We
want to note that the concept of incorporating classifiers
into the SR framework is not new. For example, percep-
tual loss [9, 16] uses a classifier to minimize the difference
between deep features of the ground truth and the predic-
tion. Thus, it is valuable to leverage classification models
for SR, especially those trained on relevant datasets.

3. Method

Our goal is a more rigorous understanding of the poten-
tial error sources in the SR framework, enabled by a texture
classifier (Figure 2). Prior to the error analysis, we first
study the dataset and textures from a complexity perspec-
tive. Once we understand the textures, we proceed to the
error analysis. In the first stage, we determine the seman-
tic content of each dataset in terms of textures and to what
extent they align. We then check how SR models perform
on each texture. Then, we consider how deep learning com-
pares to traditional methods on these textures. This is fol-
lowed by qualitative and quantitative assessments of how la-
bels can be used to determine how SR models change the se-
mantic meaning of a patch. In this section, we first describe
how the texture classifier is trained and sanity checked.

To motivate our use of textures, consider some alterna-
tives. One might argue the usage of some features more
technically precise and less fluid in interpretation, such as
frequency coefficients. This would entail representing the
image patches in terms of Fourier coefficients. But how
human-understandable is this? What does a frequency co-
efficient actually mean? It involves discussing terms such as
magnitude, phase, and sometimes complex numbers. Tex-
ture labels enable us to circumvent these problems.

3.1. Texture Classifier

Training Data. We use the Describable Textures Dataset
(DTD) [5] to train the texture classifier. DTD is a curated as-
sortment of textural images. The most important quality of
this dataset is that the labels are human-centric. The dataset
consists of 5,640 images belonging to 47 texture categories.
Each category has 120 images. The image sizes vary from
300×300 to 640×640.
Architecture. In general, the convolution layers of a classi-
fier extract features locally by using a sliding window. This
results in feature maps which preserve the relative spatial
arrangement of input images. These ordered feature maps
are then fed into a fully connected layer for classification.

Although this works well for general image classification, it
is not ideal for texture recognition since the representation
needs to be spatially invariant. Zhang et al. [46] propose an
end-to-end framework that includes an encoding for an or-
derless representation. The architecture of the texture clas-
sifier is a deep texture encoding network (DeepTEN) [46].
The backbone network is ResNet50 [13]. DeepTEN suits
our use case particularly well due to the proposed residual
encoding layer built on top of the backbone network.
Implementation Details. We train the DeepTEN model on
both the training and validation sets of DTD [5]. Achieving
reasonable accuracy for the texture classifier is non-trivial.
Our hyper-parameter tuning experiments resulted in the fol-
lowing settings. We use inputs of size 224×224 with a batch
size of 64. We train the model for 600 epochs with an initial
learning rate of 0.01 (decrease by 10× every 150 epochs),
momentum of 0.9 and weight decay of 10−6. The data is
augmented using RandAugment [6] with N = 1,M = 1
and with additional random crops and horizontal and verti-
cal flips. Inputs are normalized using the ImageNet statis-
tics. The standard multi-class cross entropy (CE) loss is
used to train the network. We achieved a training accuracy
of 97% and testing accuracy of 72%.

3.2. Texture Embedding

We check the learned representations of the classifier
through manifold visualization. Simply clustering the orig-
inal images produces poor results and does not provide hu-
man understandable labels. Instead, we extract intermediate
representations from the trained classifier. In this way, we
are able to study the manifold from a bird’s eye view with
respect to interpretable and pertinent labels.

For automatic labelling, we randomly extract 50 patches
of size 128×128 from each image in a given SR dataset.
These steps are carried out as described to mimic the
SR training procedure. Since there are 800 images in
the DIV2K training set, the resulting number of points is
40,000. The texture classifier is applied to each patch to
retrieve (1) the intermediate embedding and (2) the tex-
ture classification label. The intermediate embedding is ex-
tracted from the penultimate layer of the classifier with a di-
mension of 4,096. Thus, the data used for the clustering is
of size 40,000×4,096. We use the standard K-Means clus-
tering algorithm and set the number of clusters to 15 for a
reasonable level of granularity. The Uniform Manifold Ap-
proximation and Projection (UMAP) [30] algorithm is used
to reduce the dimension from 4,096 to 2 for visualization.

4. Experiments
4.1. Data and Texture Understanding

Method 1: PSNR vs. Entropy. The goal is to understand
the dataset content through complexity analysis and to bet-



Figure 3. The entropy of the gradients vs. the bicubic PSNR of
DIV2K patches. The best fit line is shown in red, indicating a
strong inverse relationship. As entropy increases, the PSNR gen-
erally decreases. Sample patches along the purple and blue dashed
lines demonstrate an interesting behavior. When holding one vari-
able constant, the other variable can have a large spread in values.

ter understand the defining characteristics. Several metrics
have been proposed with the aim of capturing complex-
ity. In a related image enhancement field, [33] propose the
PatchSNR, or the “Signal-to-Noise” ratio within a patch.
The PatchSNR is defined as the square root of the variance
of the clean patch divided by the variance of the noise. They
demonstrated that certain patches have a preference to inter-
nal or external denoising using this metric. Alternatively, a
recent work [20], proposes ClassSR in which they frame
this as an image classification task. They train a shallow
network to classify the complexity of a patch. The ground
truth is determined by the PSNR of MSRResNet [42] and
split into three classes: easy, medium, and hard. When
proposing DIV2K, Agustsson et al. [40] examined the en-
tropy of images vs. the bicubic PSNR. The entropy is an
indicator of the amount of information present in the im-
age per image pixel [1]. We show below that contrary to
Agustsson et al. [40], entropy can not always be used to
predict the PSNR, i.e., entropy serves as a proxy for the
complexity. Following the logic of [40], Figure 3 shows
the entropy of the gradients vs. the bicubic PSNR (×4) of
DIV2K patches. The best fit line is shown in red, indicating
a strong inverse relationship. From the plot, we can see that
as entropy increases, the PSNR generally decreases. How-
ever, for a single entropy value, we can have a large spread
of different PSNR values. Consider the blue dashed line at
entropy = 8. We show two patches along this line that have
the same entropy, yet the PSNR of one is more than twice
that of the other. Likewise, for a single PSNR value of 30
dB (indicated by the dashed purple line), we have entirely
different entropy values. This means that neither the PSNR
alone nor the entropy of the gradients alone are effective
measures of the perceptual complexity and difficulty.

Method 2: PSNR vs. Entropy by Texture Labels. To gain
a better understanding of what the textures are capturing
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Figure 4. Top 3 and bottom 3 performing labels with respect to
bicubic PSNR performance. The bottom 3 labels generally have
high entropy and low PSNR. Black points belong to the label of
interest, while points in gray correspond to the remaining points.

relative to complexity, we conduct the same analysis again,
but this time, relative to the texture labels. Figure 4 shows
the top 3 and bottom 3 labels for the same data of Figure 3.
With this view, we are able to assess the textures and un-
derstand what complexity they correspond to. It is interest-
ing to note that for the bottom 3 labels, they are generally
condensed in the right quadrant, where patches have a low
PSNR and a high entropy. On the other hand, the top 3 la-
bels are distributed across the spread of entropy and PSNR
values, indicating a varied complexity. We also note there
is some redundancy among these top 3 labels. Since they
span generally the entire plot, they contain redundant pat-
terns. Although this method helps us understand the tex-
tures in a non-biased way, we still need a better picture of
how the textures are related and how the aforementioned re-
dundancy manifests itself. For this, we turn to grouping the
patch texture embeddings via clustering.
Method 3: Texture Feature Manifold. Finally, to under-
stand the relationship between textures, we visualize the
manifold they span after projecting the patches to the em-
bedding space of the texture classifier (outputs of the penul-
timate layer). Figure 5 shows the manifold spanned by
DIV2K’s clusters. In the bottom plot, points are colored
based on their cluster label. There is a rich and varied com-
plexity across and within clusters. Due to this inter- and
intra-cluster variability, we show the same points, but in-
stead colored based on their classification labels in the top
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Figure 5. UMAP of DIV2K [40] training patches projected to
the texture classifier embedding space (outputs of the penultimate
layer). In the top visualization, points are colored based on their
classification label predicted by the texture classifier with 47 la-
bels. In the bottom visualization, points are colored based on
embedding-space clustering, with 15 clusters. The boxes demon-
strate how a single cluster (bottom left) can span several classes
and how a single label (top right) can contain multiple clusters.

plot. Sample patches in each cluster along with the cluster’s
top label are shown in Figure 6 for reference.

We find interesting semantic correlations which make
the description even more granular and expressive. Al-
though the labels in Figure 6 are the most frequent among
patches in that cluster, some can be highly correlated with
multiple semantically related labels (i.e. grid and lined
or cobwebbed and veined 3rd column, 4th row in the
figure). This behavior is further illustrated in the manifold
visualization, in which we see several classes overlapping.
In the boxed regions to the left of Figure 5, we demonstrate
how cluster #4 (dark green) contains several texture classes.
Interestingly enough, we also note that the opposite behav-
ior can occur. In the top right bounding box, points corre-
spond to a single label (dark pink). However, those points
belong to multiple clusters. This results in two main take-
aways. First, there must be underlying common features
which cause points to belong to multiple clusters and labels
simultaneously. It is useful for us then to learn what these
features are and how they express themselves. Second, and
at the core of our message: multiple perspectives should be
considered when evaluating SR models.
Discussion. Our analysis so far has resulted in a very im-
portant takeaway. There is significant redundancy among
labels and clusters in terms of complexity. Given this re-
dundancy, we conjecture as to whether an SR model needs
the entire DIV2K training set. We noted that the most diffi-
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Figure 6. Sample DIV2K HR patches from each embedding clus-
ter along with the cluster’s most frequent texture classification la-
bel. Best viewed in color and zoomed in.

cult labels and patches occurred in the bottom right quadrant
(high entropy, low psnr). Those patches roughly correspond
to points where the ratio of entropy to PSNR is 0.4.

To determine whether this metric is useful for captur-
ing the redundant features, we train a model (EDSR) from
scratch on all patches (indicated by “all” in Figure 7) and
on patches whose ratio of entropy to PSNR is greater than
or equal to 0.4 (indicated by “high” in Figure 7). For Fig-
ure 7 (left), we see significant differences in performance
when training on high complexity patches using our metric
(blue) vs. when training on all patches (green). This means
that there is useful and generalizable information encoded
in these patches, and it is sufficient to train on those alone.
These patches comprise only 20 percent of the training data.

By focusing resources on these fewer patches, we can
achieve better and faster results. Therefore, throwing more
data at the problem is not necessarily always the answer.
Patches cannot just be sampled at random, they need to be
carefully chosen. This may be related to the tendency of
neural networks to learn generalizable features first [2,34].
These generalizable features often consist of simple and
low-frequency/entropy patterns. In other words, SR models
take advantage of patterns shared by multiple training ex-
amples. When 80% of the data consists of lower complex-
ity patches, it is expected that learning stagnates for more
difficult patches.

In Figure 7 (right), we show the performance when eval-
uating on all patches vs. high patches for Urban100. Re-
gardless of what we are evaluating on, training on high
patches is better. We also note the large difference in per-
formance between evaluating on all patches (top) and high
patches (bottom). These insights can inform our decisions
when studying these models and the data used to train them.
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4.2. SR Error Analysis

4.2.1 Data Distribution by Texture Labels

Figure 8 quantifies the percentage of each label for each
dataset. This distribution can be viewed as a semantic pro-
file that gives a meaningful overview of the types of images
in a dataset. We can use this to not only capture this in-
formation, but also as a unique fingerprint, which can be
used to determine if there is a potential domain shift from
the training data and evaluation data. For DIV2K, we see
that about 30% of the training data consists of porous,
flecked patches, and gauzy. Sample patches with these
labels are visualized in Figure 6. These may correspond
to backgrounds, or out of focus image patches, like those
found in “water” or “sky” superpixels.

For Urban100, a large share of the patches are assigned
the class labels of grid, crosshatched, and grooved.
The Urban100 dataset contains images of urban environ-
ments, with buildings and windows, which generally exhibit
very grid-like structures. The images all contain repetitive
patterns and high self-similarity. The label distribution suc-
cinctly summarizes these semantically related dataset char-
acteristics. Similarly, B100 mostly consists of potholed,
porous, and gauzy patches. B100 covers a large variety
of real-life scenes.

The distribution of Manga109 labels is of particular
interest. It is dominated by two closely related labels:
swirly and spiralled followed by interlaced.
None of these top 3 labels appear in DIV2K’s top 10 la-
bels. Manga109’s semantic profile does not exhibit simi-
lar class label distributions as the other evaluation datasets.
This behavior can potentially be attributed to the fact that
Manga109 consists of images drawn by artists which fol-
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low an animated style. They are not natural images; their
internal image statistics and priors are different. Although
this is the case, SR performance on Manga109 is usually
higher since the image complexity is low. Evaluation on
this dataset can be a misleading reflection of the model’s
performance. We note how our semantic profile was able
to detect this deviation. This can be a valuable method to
capture the degree of semantic alignment with the training
data, and can flag serious problems like potential domain
shift. Additionally, this method can be used to assess the
diversity of the dataset.

4.2.2 Error Distribution by Texture Labels

Potential Pitfall: The semantic groups that models per-
form the best on are not representative of the dataset.
Now that we have an overview of the types of patches within
each dataset, we want to evaluate how deep learning SR
models perform on each of these semantic groups. Figure 9
shows the average PSNR for each benchmark dataset for the
top and bottom 5 labels, separated by a red line. The white
text over each bar indicates the absolute difference between
the SR model and traditional bicubic upsampling.

There are several insights to be extracted from this figure.
First, some class labels are consistently difficult, or consis-
tently easy across datasets and SR models. Consider, for
example, the fibrous class label. It appears in the bottom
5 for each dataset and each SR model. Likewise, bubbly
and polka-dotted commonly appear in the top 5 per-
forming labels. Because of this consistent behavior, we can
verify that the class label can serve as a proxy for the dif-
ficulty of a patch. This can be useful since it gives us a
more meaningful way to think and communicate about the
data. For example, if we are to curate a new challenging
dataset, we can collect images using the worst performing
class labels. Second, we noted in the previous section what
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Figure 9. Average performance of each model on the top and bot-
tom 5 labels separated by a red line. The absolute delta between
deep learning and bicubic is indicated in white over each bar.

the most frequent labels are for each dataset (in Figure 8).
This distribution gives us a description of the dataset and an
indication of which labels reflect its contents the most. It is
concerning then that Figure 9 does not show these patches
in the top 5 performing labels. The labels the model per-
forms the best on are not the labels that reflect the content
of the dataset. For example, crosshatched is the 3rd
most frequent label of Urban100, but is always in the worst
performing labels across all SR models. This is even more
motivation to couple these two overviews together when
considering model performance. They give a more gran-
ular and holistic reflection of the performance. We might
attribute the consistent appearance of certain labels in the
bottom 5 for some datasets to the fact they are not common
in the training data. If the model did not encounter enough
of this type of patch, performance will be low.

Potential Pitfall: The difference between bicubic and
deep learning can be surprisingly small. We must con-
sider how bicubic upsampling performs relative to each
model. We use deep learning (DL) to achieve gains over tra-
ditional, non DL based methods. State-of-the-art methods,
such as EDSR [23] and RCAN [47] use roughly 43 M and
15 M parameters, respectively. Additionally, these models
encounter thousands of image patches during training. Con-
sidering the amount of data and parameters DL models can
utilize, it is thus expected that the margin between DL and

Model Set14 B100 Urban100 Manga109
Bicubic 20.2 26.1 31.6 31.9
EDSR [23] 33.4 30.9 47.1 52.4
RCAN [47] 37.4 32.9 50.1 53.2
NLSN [31] 37.9 34.4 50.1 54.2
SAN [7] 35.1 32.6 48.6 52.6

Table 1. Percentage (%) of reconstructed SR patches with the same
texture labels as their HR ground truth counterparts.

traditional methods will be vast.
We find that the margin is surprisingly small. Figure 9

illustrates the average PSNR for each of the top and bottom
5 labels. The white text over each bar indicates the differ-
ence between bicubic and DL. Consider the bottom 5 labels
in each graph. These labels should indicate the most chal-
lenging cases. For these difficult patches, both bicubic and
DL perform poorly, as expected. What is less expected is
that there is little gain from using DL. For example, for the
hardest patches of Set14, using EDSR only provided a 0.65
dB increase in the PSNR. Similarly, for the easiest patch of
Urban100, using EDSR only provided a 0.41 dB increase.

This is counter-intuitive since we use DL models to
achieve superior performance to traditional methods. It may
be beneficial then to consider a mixture of experts. By do-
ing so, we can save the computational resources on specific
patches where the margin between bicubic interpolation and
DL models is small, irrespective of whether it was a difficult
or easy patch. It can also be useful to propose a direct com-
parison against bicubic in this fashion to determine the exact
extent of the performance gain. Admittedly, the significance
of the performance gain is application dependent (and label
dependent). Having 0.5 dB margin on a “sky” patch is not a
cause for concern in natural images, but what could a 0.5 dB
difference indicate in a biomedical setting? DL might not
always be the most efficient option. Our technique enables
us to ask these types of questions and genuinely critique the
true performance gain of using DL.

4.2.3 Semantic Consistency by Texture Labels

We have discussed in great detail the types of errors im-
age SR models make by using texture classification labels
and proposed a simple metric that can help us quantify the
patch complexity. There is an opportunity to dig even fur-
ther given access to these rich semantic groups.

We saw qualitatively in Figure 1 that some types of SR
errors are rather serious, as they visually change the mean-
ing of an image. Our assumption–or rather our hope–is that
the SR image should maintain to some extent the overall se-
mantics of its HR ground-truth. One way to evaluate this is
by considering the classification accuracy before and after
reconstructing the LR. In Table 1 we show the percentage
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Figure 10. The predicted class label of sample patches. Patches
with the correct classification maintain their semantic meaning.
On the other hand, patches that are misclassified after applying the
SR model can lose valuable semantic information.

of SR patches that have the same texture classification label
as their associated HR counterparts. The results across all
datasets and models in Table 1 are surprising. The lowest
accuracy (among image SR models) of 30.9% occurs when
using EDSR and evaluating on patches from B100. This
means that EDSR changes the semantic label of more than
half the patches in this dataset. The top accuracy across all
models and datasets is around 54%.

Another surprising finding is that the bicubic classifica-
tion accuracy is extremely low. This is yet another reason
which motivates this type of analysis from a different per-
spective. When we only consider PSNR values, we can be
misled as to what the true nature of the model performance
is. The findings from this table open up opportunities for
thinking about what it is that we want to evaluate, and more
importantly, prioritize during training.

In addition to quantifying this accuracy, we also show
qualitative examples of patches along with their predicted
label (Figure 10). For patches whose class label changes
after applying the SR model, we can clearly see that the SR
model has changed the semantic meaning of the patch. For
example, in the first incorrectly classified patch, the swirls
on the right are completely missing from the SR. Instead,
there are long, thread-like lines. Hence, the new label,
fibrous. Similarly, in the next example, the HR patch
is classified as grooved since there are repetitive vertical
lines. In the SR patch, those lines are smudged, resulting

in the new label, blotchy. An intriguing example occurs
in the last patch. The HR patch is classified as wrinkled,
and although some wrinkles remain in the SR patch, the new
label is pitted. The wrinkles on the upper cheekbone are
blurred and cause the misclassification. For correctly clas-
sified patches, we see very little qualitative differences be-
tween the HR and SR. To catch these types of mistakes, we
would need to tediously inspect all the fine details of SR
patches and compare them against the ground truth. The
texture classifier can be used to streamline this process by
limiting the search space to patches whose SR label does
not match the HR label. It also help us gauge the serious-
ness of misclassifications. Perhaps banded to lined is
not as dire as striped to smeared.

4.3. Limitations

There are a few caveats to our analysis. As usual, the
results depend on the choice of hyper-parameters to some
extent. For instance, there is a trade-off between patch size
and accuracy. A larger patch size would incorporate more
patterns. The patch size can also affect the analysis con-
cerning the difference between bicubic and deep learning.
Another problem is the accuracy of the texture classifier.
We achieved an accuracy of 72% on the test set of DTD af-
ter careful hyper-parameter tuning. The generalization ca-
pability needs to be improved, perhaps with stronger data
augmentations and regularizations. One approach would be
to follow the same data collection scheme as DTD (using
keywords/labels to scrape images from search engines) and
use more images per label and more labels. Possible ex-
planations for why the SR changes the classification label
despite the images seeming perceptually identical is of in-
terest and this behavior can certainly skew the results.

5. Conclusion

In this work, we take a first step towards reconsider-
ing the SR evaluation. The analysis is indeed conducted
relative to the classes in the texture dataset. This means
that the general approach is task and application agnostic.
The approach can be applied to any image enhancement
method (de-blurring, restoration, etc.) and any application
(biomedical, natural, etc.). The “texture” dataset can be
defined and specified based on the application. For exam-
ple, one application can be SR models that operate on im-
ages of faces. Our approach may detect biased models by
identifying which classes the model fails on (e.g., sensitive
attributes such as gender, race, and age); information the
PSNR and SSIM alone could not provide.
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