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Pulse-driven robot: Motion via solitary waves
Bolei Deng1, Liyuan Chen1, Donglai Wei2, Vincent Tournat3, Katia Bertoldi1,4*

The unique properties of nonlinear waves have been recently exploited to enable a wide range of applications, 
including impact mitigation, asymmetric transmission, switching, and focusing. Here, we demonstrate that the 
propagation of nonlinear waves can be as well harnessed to make flexible structures crawl. By combining experi-
mental and theoretical methods, we show that such pulse-driven locomotion reaches a maximum efficiency when 
the initiated pulses are solitons and that our simple machine can move on a wide range of surfaces and even steer. 
Our study expands the range of possible applications of nonlinear waves and demonstrates that they offer a new 
platform to make flexible machines to move.

INTRODUCTION
Flexible structures capable of sustaining large deformations are 
attracting increasing interest not only for their intriguing static 
response (1–3) but also for their ability to support large amplitude 
elastic waves. It has been shown that by carefully controlling their 
geometry, the elastic energy landscape of these highly deformable 
systems can be engineered to enable the propagation of a variety of 
nonlinear waves, including vector solitons (4–6), transition waves 
(7–9), and rarefaction pulses (10, 11). As such, the dynamic behavior 
of these structures not only displays a very rich physics but also offers 
new opportunities to manipulate the propagation of mechanical signals, 
enabling unidirectional propagation (5, 8), mechanical logic (7), wave 
guiding (12, 13), focusing (14), energy trapping (15), and mitigation 
(10) and damping of nonlinear periodic vibrations (16).

Here, inspired by both the retrograde peristaltic waves observed 
in earthworms (Fig. 1A) (17, 18) and the ability of linear elastic waves 
to generate actuation in ultrasonic motors (19–22), we show that the 
propagation of nonlinear elastic waves in flexible structures provides 
opportunities for locomotion. To demonstrate the concept, we focus 
on a Slinky (Fig. 1B) (23–26)—an iconic stretchable toy that has 
captivated children and adults all over the world—and use it to 
realize a pulse-driven robot capable of propelling itself. Our simple 
machine is built by connecting the Slinky to a pneumatic actuator 
and using an electromagnet and a plate embedded between the loops 
to initiate nonlinear pulses that propagate from the front to the back. 
Notably, we find that the directionality of these pulses enables our 
simple robot to move forward. Moreover, our results indicate that 
the efficiency of such pulse-driven locomotion is optimal when the ini-
tiated waves are solitons—large amplitude (nonlinear) pulses with stable 
shape and constant velocity along propagation (4, 5, 7, 8, 10, 27–30). 
As such, our study expands the range of possible applications of 
solitary waves and demonstrates that they can also be exploited as 
simple underlying engines to make flexible machines move.

RESULTS
Our Slinky-robot
We consider a metal Slinky with a length of 50 mm, an outer radius 
of 46.58 mm, and 90 loops, each with mass of m = 1.01 g (Fig. 1B 

and section S1) and investigate how to exploit its intrinsic flexibility 
to realize a simple machine capable of rectilinear locomotion. To 
this end, we connect two Slinkies in series (for a total of 180 loops 
with length L = 100 mm) and implement a simple actuation strategy 
based on a pneumatic actuator with a stroke of 140 mm (realized 
using a plastic syringe and a pump), an electromagnet (12V 20N, 
UXCELL), and three acrylic plates: a front plate inserted between 
the 20th and 21st loops of the Slinky, a loading plate with an embedded 
metallic nut fitted between the 30th and 31st loops, and a back plate 
used to support the tail (Fig. 1, C to E). To construct the robot, we 
take the pneumatic actuator, connect one of its ends to the front plate, 
and glue the electromagnet directly on the actuator (Fig. 1D and 
section S2). When the magnetic field is on, the loading plate remains 
in contact with the electromagnet, and the 10 loops of the Slinky 
between the front and loading plates can be stretched and shortened 
using the pneumatic actuator (Fig. 1E). We test the response of our 
simple machine by placing it on a smooth and flat surface (Canson 
Bristol paper) and repeatedly extending the 10 loops to Ain (Ain being 
the maximum distance between the loading and front plates; Fig. 2A). 
We monitor the tests with a high-speed camera (SONY RX100) and 
extract the displacement of the head, uh, by tracking the position of 
the front plate via a superpixel-based method (31).

We start by actuating the Slinky while keeping the electromagnet 
on. In Fig. 2A, we report snapshots taken during a test, in which we 
repeatedly extend the front 10 loops to Ain = 100 mm. Although the 
head of the robot reaches   u h  max  = max( u  h   ) = 80  mm when the actu-
ator is fully extended, because of the symmetric frictional properties 
it goes back to the initial position at the end of each cycle (Fig. 2B); 
therefore, no forward motion is achieved (Fig. 2A and movie S1). 
Next, in an attempt to break symmetry and make our machine crawl, 
we turn off the magnetic field after stretching the front loops to Ain = 
100 mm. As soon as the electromagnet is turned off, the stretch in 
the front loops results in the excitation of a wave that propagates 
backward and reaches the back end of the Slinky (Fig. 2C and movie S1). 
Note that no reflected wave is observed in the Slinky because of the 
large energy dissipation upon collisions of the loops. We find that 
the propagation of this unidirectional pulse results in a nonzero uh 
at the end of each cycle—a clear indication that our robot moves 
forward. Specifically, if we denote with   u h  cycle   the difference between 
the displacement of the head at the end and at the beginning of a 
specific cycle, we find that   u h  cycle  / L = 0.32 ± 0.02  (green line in 
Fig. 2B). Therefore, our results indicate that the directionality intro-
duced by the elastic waves can be exploited to make the robot move 
even in the presence of identical friction coefficients in backward 

1Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University, 
Cambridge, MA 02138, USA. 2LAUM, CNRS, Le Mans Université, Av. O. Messiaen, 72085 
Le Mans, France. 3Kavli Institute, Harvard University, Cambridge, MA 02138, USA. 
4Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 02138, USA.
*Corresponding author. Email: bertoldi@seas.harvard.edu

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

 on M
ay 5, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Deng et al., Sci. Adv. 2020; 6 : eaaz1166     1 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 6

and forward directions. Furthermore, we also find that the phenomenon 
is robust as the robot behaves almost identically during various cycles 
(Fig. 2B).

Although our results indicate that the propagation of elastic 
pulses can be exploited to make our flexible machine crawl, they 
also reveal that the conditions used in our experiments are not 
optimal because there is noticeable backsliding immediately after 
the electromagnet is turned off. Specifically, if we focus on the first 
cycle, we find that uh suddenly drops from   u h  max  = 0.8L  to about   
u h  cycle  = 0.32L  (Fig. 2B). To limit such backsliding, we increase the 
mass at the head, mh. In Fig. 2D, we report the average value of   u h  cycle   
over three cycles as a function of mh/mtot (mtot being the total 
mass of the Slinky). While for the robot considered in Fig. 2C (for 
which mh/mtot = 0.23 )   u h  cycle  = 0.32L , we find that for  0.26 <  m  h   /  
m  tot   < 0.39   u h  cycle   increases to ∼0.45L. However, if mh/mtot> 0.4,   
u h  cycle   then suddenly drops as the weight prevents the head to move 
forward when the pneumatic actuator is extended (movie S2).

Having identified an optimal range for mh, we choose mh/mtot = 
0.32 (resulting in mh = 78 g and mtot = 246 g) and investigate the 
effect of Ain on the ability of our robot to crawl (Fig. 2E). As ex-
pected, we find that   u h  cycle   monotonically increases with Ain. However, 

more insight into the role of Ain can be gained by calculating the 
efficiency  of such pulse-driven locomotion

   =   
 W  req  

 ─  W  in      (1)

where Wreq denotes the work required for the robot to move on the 
substrate against friction and Win is the work supplied to initiate the 
pulse. Specifically, if we denote with  the friction coefficient between 
the Slinky and the substrate

   W  req   =   m  tot   g  u h  cycle   (2)

and

   W  in   =   m  h   g  u h  max  +  n  a    ∫
0
  

  A  in   _  n  a    
   F(u ) du  (3)

where g is the gravitational constant, na is the number of loops be-
tween the loading and front plates, and F denotes the force required 
to stretch one loop of the Slinky by u. Note that the first term of 
Eq. 3 stands for the work done to move the head of the Slinky, while 
the second one represents the elastic energy stored in the front na 
loops, which is eventually carried by the excited pulse. For the tests 
considered in Fig. 2, na = 10 and we measure  = 0.17. Moreover, we 
obtain the F-u relation by conducting a quasistatic uniaxial tension 
test on a portion of the Slinky (see Fig. 2F and section S1 for details). 
In Fig. 2G, we plot the evolution of  as a function of Ain obtained 
using Eqs. 1 to 3. Notably, we find that the efficiency of our machine 
is maximum for Ain = 100 mm. While in Fig. 2G we focus on a robot 
in which 10 loops are prestretched, this result persists also when we 
vary na. In particular, as shown in Fig. 2H, we find that for a wide 
range of na, the efficiency is maximum at Ain = 100 mm. However, 
such maximum decreases if na < 7 or na > 16. For large values of na, 
the energy carried by the excited pulses is small (see fig. S7) and not 
enough to make them propagate in the presence of friction (see 
movie S3). Differently, when na is too small, the energy carried by 
the pulses is large, making the pulse to reach the back of the Slinky 
(see movie S3). At this point,   u h  cycle   saturates (see fig. S7) and the 
efficiency drops because part of the energy carried by the pulse is 
lost through collisions between the loops.

Propagation of nonlinear waves
To understand why the efficiency of our robot is maximum for Ain = 
100 mm, we carefully investigate the propagation of large-amplitude 
pulses through the Slinky. In these tests, we focus on a single Slinky 
(with N = 90 loops) and monitor the position of green markers 
located at every other loop. Moreover, to minimize the effect of fric-
tion, we lift the Slinky from the substrate and use a plastic rod to 
support it (Fig. 3A). As in the tests conducted on our Slinky-robot, 
we find that by prestretching 10 loops near the front and turning off 
the magnetic electromagnet, we can initiate elastic waves that propa-
gate toward the back (Fig. 3B). Furthermore, these tests enable us to 
get deeper insights into the propagation of the pulses because we 
monitor the displacement of each individual loop (movie S4). In 
particular, two important features emerge from these tests. First, we 
find that the backward-propagating waves move the center of mass 
of the Slinky forward (Fig. 3C)—an observation that further ex-
plains how the pulses make our Slinky-robot move. Second, we find 
that for Ain = 100 mm, the excited waves propagate while maintaining 
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Fig. 1. Our Slinky-robot. (A) Schematic showing the locomotive mechanism of 
an earthworm based on retrograde peristaltic waves (i.e., waves that propagate in the 
opposite direction to locomotion). (B) Picture of metallic Slinky used in this study. 
(C and D) Pictures of our Slinky-robot (C) before and (D) after the pneumatic actuator 
is elongated. (E) Front view of the Slinky-robot showing the electromagnet. Note 
that several red plastic spheres are glued on to the Slinky to prevent it from rolling. 
Photo credit: Bolei Deng, Harvard University.
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their shape at a constant velocity of 279 loop/s, with only slight 
acceleration near the end due to boundary effects (Fig. 3D). This 
suggests that the Slinky supports the propagation of large-amplitude 
solitary waves. To further confirm this observation, we calculate the 
cross-correlation of the velocity signals measured at the 10th and 
80th loops (Fig. 3E). We find that the cross-correlation is maximum 

and approaches unity for Ain = 100 mm (movie S4), the same ampli-
tude that maximizes the efficiency of our Slinky-robot (see Fig. 2G).

To provide deeper insight into these experimental results, we 
developed a mathematical model based on a one-dimensional array 
of concentrated masses m connected by nonlinear springs, which 
represent the mass and elasticity of an individual loop, respectively 
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Fig. 2. Performance of the Slinky-robot. (A) Snapshots taken during a test in which we extend the front 10 loops to Ain = 100 mm while keeping the electromagnet on. 
(B) Displacement of the head during three cycles for tests in which (i) mh/mtot = 0.23 and we keep the electromagnet on (red line), (ii) mh/mtot = 0.23 and we turn off the 
electromagnet after stretching (green line), and (iii) mh/mtot = 0.32 and we turn off the electromagnet after stretching (blue line). (C) Snapshots taken during a test in 
which Ain = 100 mm and we turn the electromagnet off after stretching the front loops. (D) Evolution of   u h  cycle   as a function of mh/mtot for tests in which Ain = 100 mm. The 
square and triangular markers correspond to mh/mtot = 0.23 and 0.32, respectively. (E) Evolution of   u h  cycle   as a function of Ain for tests in which mh/mtot = 0.32. The triangular 
marker corresponds to Ain = 100 mm. (F) Static response of the Slinky as measured in a uniaxial test. (G) Evolution of  as a function of Ain for tests in which mh/mtot = 0.32. 
The triangular markers correspond to Ain = 100 mm. The green dashed line corresponds to the amplitude of the supported soliton, As. (H) Evolution of  as a function of 
na and Ain for tests in which mh/mtot = 0.32. Photo credit: Bolei Deng, Harvard University.
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(Fig. 4A). The governing equations for such discrete system can be 
written as

  m    ∂   2   u  i   ─ 
∂  t   2 

   = F( u  i+1   −  u  i   ) − F( u  i   −  u  i−1  )  (4)

where ui represents the displacement of ith mass and F(ui+1 − ui) 
denotes the force in the spring connecting the ith and (i + 1)th 
masses. For the Slinky considered in this study, m = 1.01 g and the 
elastic response of an individual loop can be nicely fitted by

  F( u  i+1   −  u  i   ) = k [ ( u  i+1   −  u  i   ) +   ( u  i+1   −  u  i  )   3 ]  (5)

with a stiffness constant k = 79.2 N/m and a cubic nonlinearity 
parameter  = 155.1 m−2 (see Fig. 2F and section S3 for details). 
Note that Eq. 5 only captures the response of the Slinky under 
tension (i.e., ui+1 − ui ≥ 0) and therefore limits us to investigate 
rarefaction wave solutions.

Next, because in our experiments the wavelength of the propa-
gating waves is much wider than a single loop, we take the continuum 
limit of Eq. 4 and retain derivatives up to fourth order to obtain the 
continuum governing equation

    1 ─ 
 c 0  2 

      ∂   2  u ─ 
∂  t   2 

   =    ∂   2  u ─ 
∂     2 

   +   1 ─ 12      ∂   4  u ─ 
∂     4 

   +    ∂ ─ ∂     (     ∂ u ─ ∂   )     
3
   (6)

where u(, t) is a continuous function that interpolates ui(t), i.e., u( = i, t) = 
ui(t),  denotes the loop number, and   c  0   =  √ 

_
 k / m   = 280.0  m/s is the 

velocity of linear waves in the long-wavelength regime. Equation 6 
has been shown to be equivalent to the generalized Boussinesq 
equation and admits an analytical solution in the form of a rarefaction 
solitary wave (32)

   u = −  √ 
_

   2 ─ 3     arctan  [  tanh  (      −    0   − c t ─ W   )   ]   +    ─ 4    √ 
_

   2 ─ 3       (7)

with

  W =  √ 
_

   1 ─ 
3( c   2  /  c 0  2  − 1)

      (8)

where 0 identifies the position of the wave at t = 0 and c and W are 
the velocity and the characteristic width of the pulse, respectively. 
Because solitary waves propagate maintaining their shape, we re-
quire the maximum extension in the Slinky [i.e., max (∂u/∂)] to be 
equal to that imposed to the 10 loops before turning off the electro-
magnets (i.e., Ain/na)

      A  in   ─  n  a     = max  
(

     ∂ u ─ ∂    )
   =  √ 

_

   2 ─    (      c   2  ─ 
 c 0  2 

   − 1 )       (9)

and in this way obtain a relation between propagation velocity c and 
the applied input Ain. Last, the amplitude of the supported soliton 
can be calculated as

   A  s   = u( → ∞) − u( → − ∞) =    ─ 
 √ 
_

 6  
    (10)
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Fig. 3. Wave propagation in the Slinky. (A) Experimental setup used to test the 
propagation of pulses in the metallic Slinky. At t = 0 s, na = 10 loops between the 
loading plate and the front of the Slinky are stretched to Ain = 100 mm. (B) Snap-
shots of the propagation of the pulse in the Slinky at t = 0.10, 0.17, 0.24, and 0.34 s. 
The circular markers indicate the positions of the center of mass of the Slinky. 
(C) Displacement of the center of mass of the Slinky, uCM, as a function of time. Circu-
lar markers correspond to the time points considered in (A) and (B). (D) Spatiotemporal 
displacement diagram of the propagating pulse. (E) Velocity signals measured at 
the 10th and 80th loops. (F) Evolution of the cross-correlation of v10 (t) and v80 (t) 
as a function of the input amplitude Ain. The triangular marker corresponds to 
Ain = 100 mm. The green dashed line corresponds to the amplitude of the supported 
soliton, As, predicted by Eq. 10. Photo credit: Bolei Deng, Harvard University.
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0.24 s as measured in our experiments (circular markers) and predicted by our an-
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and is found to be an intrinsic property of the Slinky, because it only 
depends on  (i.e., on the strength of the nonlinear term in its static 
force-displacement response; see Eq. 5). For the Slinky considered in 
this study, using Eqs. 8 to 10, we obtain As = 103 mm, c = 282.2 loop/s, 
and W = 4.62 loop—values that match extremely well with the ex-
perimental results (Fig. 4B). Note that the model also confirms the 
experimental observations reported in Fig. 3, as it predicts that only 
pulses with amplitude Ain ∼ As = 103 mm propagate in solitary fashion 
through the Slinky. Last, our analysis reveals that the efficiency of 
the Slinky-robot is maximum when the initiated waves are solitons 
(i.e., when Ain = As; see green dashed lines in Fig. 2, G and H). The 
nondispersive nature and compactness of solitary pulses make them 
extremely efficient in transferring the energy provided by the pneu-
matic actuator to motion, ultimately resulting in the most efficient 
pulse-driven locomotion.

DISCUSSION
To summarize, we have shown that backward propagating solitons 
can be harnessed to efficiently make a Slinky-robot move forward. 
Although limbless organisms have recently inspired the design of a 
variety of robots (33–40), to the best of our knowledge, this is first 
robotic system that exploits elastic pulses to move. It is also worth 
noting that the principles presented in this study are different from 
those used by ultrasonic motors (19). Our Slinky-robot is flexible 
and uses nonlinear pulse waves to change the position of the cen-
ter of mass. By contrast, ultrasonic motors are powered by linear 
sinusoidal waves, induce local microscopic displacements (eventually 
adding up over many periods to produce a large motion), and 
modulate friction by exerting an oscillating normal force between 
stiff surfaces.

It is important to point out that, while in this study we have 
focused on rectilinear forward crawling, the flexibility of the Slinky 
can be exploited to expand the range of achievable motions. For 
example, we can make the robot steer by twisting the last loop at the 
back of the robot by an angle  before initiating the wave (Fig. 5A 
and movie S5) and easily control the steering angle  by tuning both 
the direction and magnitude of  (Fig. 5B).

We also want to emphasize that our robot can move over a broad 
range of surfaces. To demonstrate this point, in Fig. 5C, we report   
u h  cycle   recorded when our Slinky-robot (with mh/mtot = 0.32 and Ain = 
100 mm) moves on surfaces characterized by a broad range of 
roughness (so that  ∈ [0.1,1]). Notably, we find that for a  < 0.3,   
u h  cycle   remains almost constant (  u h  cycle  ∼ 0.45L ). For larger values of 
, the frictional forces prevent propagation of the pulses and   u h  cycle   
drops significantly—an additional demonstration of the important role 
played by the wave propagation in achieving locomotion (movie S6).

Last, while in this study we have used a Slinky to realize such 
pulse-driven locomotion, the principles are general and can be 
expanded to a broad range of stretchable systems across scales, 
opening avenues even for microscale crawlers suitable for medical 
applications.

MATERIALS AND METHODS
The basic properties of the metallic Slinky are provided in section S1. 
Details on fabrication, testing, and additional results of the Slinky- 
robot are described in section S2. Details on the experiments con-
ducted to characterize the propagation of nonlinear waves are 
presented in section S3. Details on the model established to characterize 
the propagation of nonlinear waves are presented in section S4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/18/eaaz1166/DC1
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