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Abstract. Reconstructed terabyte and petabyte electron microscopy
image volumes contain fully-segmented neurons at resolutions fine enough
to identify every synaptic connection. After manual or automatic recon-
struction, neuroscientists want to extract wiring diagrams and connectiv-
ity information to analyze the data at a higher level. Despite significant
advances in image acquisition, neuron segmentation, and synapse detec-
tion techniques, the extracted wiring diagrams are still quite coarse, and
often do not take into account the wealth of information in the densely
reconstructed volumes. We propose a synapse-aware skeleton generation
strategy to transform the reconstructed volumes into an information-
rich yet abstract format on which neuroscientists can perform biological
analysis and run simulations. Our method extends existing topological
thinning strategies and guarantees a one-to-one correspondence between
skeleton endpoints and synapses while simultaneously generating vital
geometric statistics on the neuronal processes. We demonstrate our re-
sults on three large-scale connectomic datasets and compare against cur-
rent state-of-the-art skeletonization algorithms.
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1 Introduction

Acquisition techniques [17], automatic segmentation methods [5], and synapse
detection strategies [3] in connectomics have all progressed rapidly in the last
decade, yielding densely reconstructed volumes at nanometer resolution. These
terabyte and petabyte volumes contain hundreds of thousands of interconnected
neurons and millions of synaptic connections. Despite the rich detail in the recon-
structed 3D volumes, most analysis of this data occurs at a very coarse level [4].

Little research has focused on generating accurate wiring diagrams from the
raw reconstructions. Current approaches [5] directly use an off-the-shelf skele-
tonization method to reduce these volumes into a series of nodes (neurons) and
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Fig. 1. Our method takes as input a segmentation dataset with cell body information
and synapse locations (left). We generate a synapse-aware skeleton using a topological
thinning strategy that relies only on local context (center) to produce accurate center-
lines connecting all synapses to the cell body (right).

weighted edges (synapses). Unfortunately, such simplification eliminates valuable
information needed for accurate biological analysis, such as geodesic distance
from synapse to cell body and width of the neuron along the path. Concur-
rently, theoretical neuroscientists create biophysics-based simulations of simple
neuronal circuits by numerically solving a series of differential equations that
estimate the voltage change in a dynamic system [6]. These simulations often
model neurites as a series of cylinders each with capacitance and resistances
given a lack of accurate fine-resolution data, such as neurite width, length, and
the accurate enumeration of connecting synapses. In addition, accurate skeleton
representations of neuronal processes are increasingly important in the field of
connectomics for biologically-constrained reconstruction [11], error correction [2],
evaluation [5], and visualization [12].

The most commonly used skeletonization methods in the connectomic litera-
ture are the Tree-structure Extraction Algorithm for Accurate and Robust Skele-
tons (TEASER) [16] and its variants [19]. Alternative skeletonization approaches
in the volume processing and graphics communities extract the medial axis from
3D volumes through the gradual erosion of their surfaces [9,13]. These methods
rely only on local context to eliminate voxels while simultaneously preserving
the topology of the original volume [13], but they do not maintain biologically
relevant details. We present a novel synapse-aware skeleton generation strategy
to transform volumetric connectomic data into a format for detailed analysis of
the wiring diagram, accurate simulations, and improved reconstructions.

Our method builds on the class of topological thinning algorithms [9,10,13]
and simplifies the input volume while still maintaining essential geometric at-
tributes (Figure 1). Our thinning based approach produces a center-line for the
neuron with accompanying estimated neurite widths along the skeleton. We guar-
antee that the skeleton connects all detected synapses along the neuron. We fur-
ther refine the skeleton to enforce specific topological properties based on the un-
derlying biology and efficiently calculate the geodesic distance from each synapse
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Fig. 2. Following existing work, we use only the local neighborhood around a point p
to determine deletion (left). N6(p) contains the point p and the six points labeled U,
D, N, S, E, and W. N18(p) includes the points in N6(p) and the twelve � points.
N26(p) is the set of N18(p) and the eight points marked by . Two points x0 and xn

are 18- (center) and 26-connected (right) if each point xi along the path is in Nj(xi−1).

to the cell body, i.e., the soma. Our parameterless algorithm requires no training
data. We evaluate our method on three large-scale connectomic datasets from
three different species and compare our results to state-of-the-art skeletonization
algorithms. Our algorithm generalizes to other medical image domains such as
skeleton generation of the cardiovascular or peripheral nervous system where the
endpoints correspond to capillaries or nerve endings, respectively.

2 Methodology

Our synapse-aware skeleton generation approach adapts previous topological
thinning algorithms [9,13] to guarantee a one-to-one correspondence between
endpoints and synapses. We efficiently estimate the width of the neuronal pro-
cesses during the thinning process. Subsequently, we calculate the geodesic dis-
tances from synapses to soma and refine the skeleton to enforce certain biological
constraints—namely that neurons are acyclic.

Notation. Our method takes two inputs: a point cloud representing a neuronal
process and a list of synapse locations. Here we use the following notations: Z3

is
the set of points, B is the set of object points, and Z3\B is the set of background
points.

We define three local neighborhoods of different scope around a pixel p which
we call N6(p), N18(p), and N26(p) (Figure 2, left). Two points x0 and xn are j-
connected (for j = 6, 18, 26) if there exists a path < x0, x1, ..., xn > where each xi

is in Nj(xi−1) for i = 1, ..., n (Figure 2, center, right). An object is a maximally
26-connected set of object points. Conversely, a background component is a max-
imally 6-connected set of background points. An endpoint has only one object
point in N26(p). Hence we consider digital pictures specified by the quadruple
(Z3

, 26, 6, B) [7].
Malandain and Bertrand [10] prove the following theorem to determine if an

object point p is simple (i.e., removal from the set B does not alter the topology):
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Theorem 1. An object point p is simple in a picture (Z3
, 26, 6, B) if and only

if all of the following conditions hold:

1. The set N26(p) ∩ (B \ p) contains exactly one 26-component.

2. The set N6(p) \B is not empty.

3. Any two points in N6(p) \B are 6-connected in the set N18(p) \B.

All simple points are surface points by Condition 2 of Theorem 1.

Topological Thinning. Every endpoint is a simple point by Theorem 1. There-
fore to generate skeletons, specific points are preserved to avoid a complete re-
duction to a single point in the case of an acyclic input. Some strategies include
preserving endpoints [1] or defining a second class of geometric constraints as
non-simple isthmuses [13]. We differ from previous approaches by designating
synapse locations as always non-simple and thus non-deletable. Any other point
in the volume can be removed if it adheres to the requirements of Theorem 1.
This synapse-aware endpoint strategy produces skeletons that are better suited
for higher-level analysis.

We employ a sequential thinning procedure to erode the surface uniformly in
all directions [13]. Each iteration consists of six sub-iterations where we consider
surface points whose corresponding neighbor at location U, N, E, S, W, and D
is a background point (Figure 2, left). For each of these six sub-iterations, we
identify the simple points that are potentially deletable. After collecting all the
simple points, we reiterate through the list and delete any that are still simple.
This dual-pass approach is necessary since a point may lose its simple designation
based on neighboring deletions. After deletion, we add any neighboring points
that are now on the surface to the list of surface voxels.

Width Estimation. For each object point, we store an estimate for the distance
from the point to the surface. We initialize these estimates to 0 for all surface
voxels and to ∞ for all internal voxels. When a surface point p is deleted during a
thinning iteration, we look at the neighborhood N26(p). We update the distance-
to-surface estimate for a neighboring voxel only if its distance to p plus the
distance estimate at p is less than its current value. As the surface erodes, our
internal distance estimates better approximate the actual distance to the original
surface. The distance estimates at the skeleton points correspond to half of the
width of the neuronal process at that cross-section.

Geodesic Distance Calculation. Neuronal processes are acyclic, i.e., the
genus of the cell membrane surface is zero. However, errors in the input vol-
umes can produce bubbles and tunnels in the segmentation which our topologi-
cal thinning strategy would preserve (Figure 3). Furthermore, although we can
quickly generate the neuron width at a given location with limited overhead,
we have not yet determined the geodesic distance from each synapse to the cell
body. We simultaneously enforce the acyclic constraint and produce geodesic
distances with the following procedure. First, we run Dijkstra’s shortest path
algorithm on the skeleton with the soma as the source. We only keep skeleton
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points that belong on the shortest path from a synapse to the soma. This pro-
cess removes any loops in the skeleton since any shortest path cannot contain
loops. This additional step produces the geodesic distance from every skeleton
point (including synapses) to the cell body and enforces the acyclic property of
neurons on the skeleton.

Fig. 3. Loop Removal. Since the thinning step preserves topology, any holes in the input
segmentation cause loops in the skeleton. On the left, we see an example skeleton after
thinning with several loops (the black spheres represent synapses). After refinement,
these loops disappear, leaving a cleaner skeleton (right).

3 Experiments

We evaluate our methods on three large-scale connectomic datasets from three
different species: rat, fruit fly, and zebra finch. JWR (rat) contains six fully-
reconstructed neurons with manual segmentation and synapse identification. For
FIB-25 (fruit fly), human proofreaders refined an initial segmentation produced
by a context-aware two-stage agglomeration framework [14]. Synapses underwent
a similar process of automatic detection and human refinement. Fully automatic
techniques segmented neurons [5] and identified synapses [3] for the J0126 (ze-
bra finch) dataset. The JWR, FIB-25, and J0126 datasets have resolutions of

32 × 32 × 30 nm
3
, 10 × 10 × 10 nm

3
, and 18 × 18 × 20 nm

3
, respectively.

We compare our proposed method against two baselines: TEASER [16] and
an isthmus-based topological thinning approach [13]. Both baselines are par-
ticularly susceptible to surface noise, which creates many spurious endpoints.
Additionally, the TEASER strategy requires a significant amount of memory
per voxel. Therefore, we downsample the volumes for both of these datasets to
a resolution of 100 × 100 × 100 nm

3
. Our proposed method is robust to surface

noise since endpoints only occur at designated synapse locations.

Table 1. We evaluate our method on three connectomic datasets from three different
animal species. The FIB-25 and J0126 datasets contain many neuron fragments.

Name Species Volume No. Neurons No. Synapses

JWR Rat 106 × 106 × 93 µm
3

6 10,203

FIB-25 [18] Fruit Fly 36 × 29 × 69 µm
3

491 63,258

J0126 [8] Zebra Finch 96 × 98 × 114 µm
3

371 84,098
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Table 2. We evaluate the proposed method versus two baselines approaches on three
metrics: NRI score, estimated neurite width error, and the number of points in the
skeleton. The TEASER algorithm calculates the distance transform on the downsam-
pled data, so the width given is the expected difference with upsampling.

Method

Proposed
TEASER

Isthmus Thinning

JWR
NRI ↑ Width ↓ Points ↓

1.000 25.26 nm 43,088
0.265 20 nm

∗
45,890

0.216 N/A 607,583

FIB-25
NRI ↑ Width ↓ Points ↓

1.000 13.16 nm 14,529
0.387 25 nm

∗
13,577

0.427 N/A 35,604

J0126
Width ↓ Points ↓

23.54 nm 24,533
24 nm

∗
45,946

N/A 673,256

We evaluate our results using three heuristics. The Neural Reconstruction In-
tegrity (NRI) score indicates how well a given segmentation (or skeleton) main-
tains the underlying wiring diagram of the brain [15]. An NRI score near 1.0
indicates that most of the intracellular pathways between pairs of synapses are
preserved. For our baselines, we link synapses to endpoints that fall within 800
nanometers of each other. Second, we calculate the mean absolute error of our
width prediction over a random subset of 20% of skeleton points. Lastly, we eval-
uate the simplicity of each skeleton with the number of remaining points [13].

4 Results

Table 2 shows how our proposed method performs over three evaluation metrics.

NRI. Our method guarantees a one-to-one correspondence between endpoints
and synapses, we produce a perfect NRI score of 1.0 on the JWR and FIB-25
datasets. We cannot evaluate the NRI score on the J0126 dataset since there is no
ground truth. With the addition of merge and split errors in the segmentation,
our NRI score would continue to match that of the input data. Both the TEASER
and the isthmus thinning strategies have significantly lower NRI scores ranging
from 0.216 to 0.427.

Width Estimation. Our method achieves a mean absolute error of 25.26 nm,
13.16 nm, and 23.54 nm on the JWR, FIB-25, and J0126 datasets, respectively.
The TEASER algorithm calculates the distance transform on the segmentation
data as its first step. The mean absolute error for the TEASER skeleton gener-
ation strategy would be zero if the algorithm ran on the high-resolution data.
However, since we need to downsample the data, the widths vary from the ex-
act distances. We show the expected absolute error for any point between the
downsampled distance transform and the correct surface distance.

Skeleton Simplicity. Our skeletons have the fewest total points on average
on the JWR and J0126 datasets and are within 8% of the number of points
of the TEASER skeletons on the Fib-25 dataset. The J0126 segmentation has
numerous holes, particularly in the cell bodies. The isthmus thinning strategy
preserves topology, which leads to a large number of skeleton points surrounding
each hole. A refinement step would significantly reduce the number of skeleton
points for this method.



Synapse-Aware Skeleton Generation 7

Fig. 4. Our synapse-aware skeleton generation strategy accurately produces center-
lines on several neurons over three large-scale representative datasets. We zoom into
four locations on one neuron from J0126 dataset. The black spheres indicate synapses.

Geodesic Distance Calculation. Using geodesic distances provides a much
more accurate measurement of the path from a synapse to the soma than the
frequently used Euclidean distance. The geodesic distance between each synapse
and the soma is 47% (12 µm) farther on average over the three datasets. Two
of the JWR neurons share a synaptic connection. The geodesic distance from
the soma to the presynaptic terminals and from the postsynaptic density to the
neighboring soma is 145% farther than the corresponding Euclidean distance.
These distances need to be accurate for neuron simulation.

Qualitative Results. Figure 4 shows the generated skeleton for a complete
neuron from the J0126 dataset. The black spheres indicate synapse locations.
Our skeleton refinement process removes self-loops caused by errors in the input
segmentation enforcing the constraint that neurons are acyclic (Figure 3). This
refinement process reduces the number of skeleton points by a factor of 3.48×
on average on the FIB-25 dataset.

Computational Efficiency. For each point in the neuron, we require 8 bytes for
a linear index, 1 byte for the status (surface, inside, or synapse), and 4 bytes for
the distance to the surface estimation. We average throughput of over 100, 000
voxels per second on the FIB-25 and JWR datasets. Our skeleton refinement step
takes a negligible amount of time for all tested neurons with an average through-
put of nearly 65, 000 skeleton points per second. We only consider skeleton points
when calculating the geodesic distance, a significant reduction from the overall
volume (on average 297× fewer points on the FIB-25 and JWR datasets).



8 Matejek et al.

5 Conclusion

Large-scale connectomic datasets contain fully-segmented neurons and synapse
locations. Current attempts to generate wiring diagrams from the reconstructed
data leave behind a wealth of information such as neurite width and geodesic
distance from synapse to soma. We present a novel synapse-aware skeleton gen-
eration strategy to transform the reconstructed volumetric data into an abstract
yet expressive format for detailed analysis, accurate simulation, and improved
reconstruction. We compare our method against state-of-the-art skeletonization
methods on 868 neurons and neuron fragments over three different datasets. Our
code is freely available at https://www.rhoana.org/synapseaware.
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