
Biologically-Constrained Graphs for Global Connectomics Reconstruction

Supplementary Material

Brian Matejek∗1, Daniel Haehn1, Haidong Zhu2, Donglai Wei1, Toufiq Parag3, and Hanspeter Pfister1

1Harvard University 2Tsinghua University 3Comcast Research

1. Node Generation and Reduction

Traditional two-step agglomeration strategies tend to
create very small segments at locations where the affini-
ties are noisy, usually at very thin locations. In particu-
lar, the waterz agglomeration strategy tends to create many
small segments (over 85% of segments are smaller than
0.01 µm3). Many of these small segments are completely
contained within a single z slice. These singletons often
occur on dendritic spines and other thin locations for neu-
ronal processes. Figure 1 shows an over-segmented dendrite
with two enlarged spines each containing several singletons
each. To reduce the number of singletons, we first identify
all segments that lie entirely in one z slice. We then super-
impose these singleton segments onto the neighboring slices
and merge the singleton with any other segments that have
an Intersection over Union score above 0.30. This threshold
reduces a large number of the singletons while introducing
very few merge errors.

After removing most of the singletons, we further re-
duce the number of nodes in our graph by identifying small
segments and merging them with a large neighbor. We de-
fine the threshold for small based on the skeleton genera-
tion strategy used during edge generation. Our topological
thinning algorithm for skeletonization [8] often erodes very
small volumes to a single point. Since we need multiple
points in the skeleton to generate our directional vectors,
these nodes would not receive edges (Fig. 6, right). There-
fore we analyze the number of expressive (non-single point)
skeletons above and below several thresholds (Fig. 2). We
find that over 84.1% of skeletons for segments larger than
0.010 36 µm3 are expressive and 90.5% of skeletons smaller
are trivial. This volume corresponds to 20, 000 voxels in the
PNI datasets. On three testing datasets, 50−80% of all seg-
ments are below this threshold.

∗Corresponding author, bmatejek@seas.harvard.edu

Figure 1. Current agglomeration strategies tend to produce a large
number of singletons in thin locations. Here we show an over-
segmented dendrite and two spines with many singletons.

Figure 2. The percent of trivial and expressive skeletons decreases
and increases respectively as the volume of segments increases. At
tvol = 0.010 36 µm3 nearly 85% of larger segments have expres-
sive skeletons and 90% of smaller ones are trivial.

2. Node Convolutional Neural Network

We experimented with twelve different network archi-
tectures and input configurations (Table 1). We evaluate re-
gion of interest (ROI) diameters of 800 nm, 1200 nm, and

1



800nm Cubic Regions of Interest
Input Size Training Accuracy Validation Accuracy Testing Accuracy

(3, 52, 52, 18) 0.9482 0.9343 0.9332
(3, 60, 60, 20) 0.9575 0.9427 0.9451
(3, 68, 68, 22) 0.9644 0.9346 0.9369
(3, 76, 76, 24) 0.9752 0.9386 0.9403

1200nm Cubic Regions of Interest
Input Size Training Accuracy Validation Accuracy Testing Accuracy

(3, 52, 52, 18) 0.9224 0.9096 0.9120
(3, 60, 60, 20) 0.9318 0.9144 0.9190
(3, 68, 68, 22) 0.9417 0.9264 0.9265
(3, 76, 76, 24) 0.9553 0.9257 0.9227

1600nm Cubic Regions of Interest
Input Size Training Accuracy Validation Accuracy Testing Accuracy

(3, 52, 52, 18) 0.8960 0.8851 0.8814
(3, 60, 60, 20) 0.9170 0.9097 0.9100
(3, 68, 68, 22) 0.9176 0.9043 0.9053
(3, 76, 76, 24) 0.9423 0.9085 0.9117

Table 1. We experiment with twelve different networks for the node CNN. We vary the input size to the network and the diameter of the
cubic region of interest. Each experiment ran for 2,000 epochs. Our optimal configuration on the validation data uses an 800 nm ROI with
an input size of (60, 60, 20).

Figure 3. Both neural networks follow the same general architectures with three VGG-style convolution blocks with double convolutions
followed by a max-pooling operation. Three input channels correspond to if a voxel has label one, label two, or either. The max-pooling
of the convolution blocks is anisotropic for the first two and isotropic for the last.

1600 nm. We find that the overall accuracies on the training,
validation, and testing datasets all decrease as the ROI in-
creases. We also vary the input size to the network which in
turn changes the number of nodes in the first fully connected
layer. As the input size increases the training accuracy tends
to increase but the validation and testing accuracies increase
then decrease. Thus, we see that the highest validation ac-
curacy occurs with a 400 nm ROI and a three channel input
with (60, 60, 20) voxels in each channel. Each ROI from
the input segmentation is upsampled and downsampled to
fit into this input size. This allows us to use the same ar-
chitecture sizes for new datasets with different resolutions.
We find that very limited finetuning is needed to adapt a
network to a new dataset.

The general architecture for both neural networks fol-
lows the same design (Fig. 3). Both have three VGG-style
blocks with two convolutions of (3, 3, 3) followed by a max-
pooling operation [1]. The first two max-pooling operations
are anisotropic with downsampling only in the x and y di-
mensions. The final max-pooling is isotropic. A dropout
of 0.2 follows each of these blocks, and there is a final
dropout of 0.5 after the last fully connected layer. Each ac-
tivation function is leaky ReLU after every convolution [4]
with α = 0.001. The final activation is a sigmoid function.
We initialize all weights with Xavier initialization [3].



Figure 4. To evaluate various skeletonization methods, we create and publish a skeleton benchmark. We take a ground truth segmentation
from the publically available Kasthuri dataset and label the endpoints for the 500 largest segments. Here we show two ground truth
segments and their corresponding labeled endpoints.

Figure 5. When considering values for tedge—the maximal distance a voxel can be from an endpoint for edge generation—we look at the
recall of true split errors and reduction in total edges. At 500 nm we have 95% recall compared to 800 nm with 12% fewer edges.

3. Skeleton Benchmark and Generation

Some research focuses on the use of skeletons for
quicker connectomics analysis [13] and error correction [2].
Most connectomics papers use the TEASER algorithm [11]
or a slight variant from the NeuTu package [12].1 A sig-
nificant amount of research in the computer graphics and
volume processing communities considers the problem of
extracting the medial axis from a 3D volume [6, 8, 9, 10]

Before this work, to our knowledge, no one has done
an extensive analysis of various skeletonization approaches
on connectomics data. We create and publish a benchmark
dataset for skeletonization on connectomics datasets and
evaluate three state-of-the-art 3D skeleton extraction tech-
niques. For our benchmark, we consider the 500 largest
segments for the ground truth from the Kasthuri training
volume. These 500 segments correspond to 95.4% of the
volume of the labeled ground truth data. For each of these
segments, we identify all endpoints (Fig. 4). For each skele-
ton generation strategy, we identify all of the endpoints (i.e.,
those with one or fewer neighbors also belonging to the
skeleton). For each segment and skeleton strategy, we look

1https://github.com/janelia-flyem/NeuTu

at all of the ground truth and generated endpoints and use a
Hungarian matching algorithm to create a one-to-one map-
ping between the two sets [7]. Endpoint pairs closer than
800 nm are considered a match and ones farther are not.

We evaluate three different skeleton generation strate-
gies on our benchmark dataset [6, 8, 11]. The medial
axis algorithm from Lee et al. is the built-in scipy skele-
tonization strategy. We publish the benchmark dataset at
https://www.rhoana.org/skeletonbenchmark and all code at
https://www.rhoana.org/biologicalgraphs. The TEASER al-
gorithm has two tunable parameters, scale and buffer, which
indicate how much pruning to do during generation. Neither
the medial axis algorithm or the topological thinning one
have any parameters. However, we consider skeleton gen-
eration on segments downsampled to isotropic resolutions
between 30 nm and 200 nm per sample. We achieve the
highest F-score with the topological thinning approach [8]
after downsampling each segment to a resolution of (80, 80,
80) (precision: 94.7%, recall: 86.7%, F-score: 90.5%). In
total, nearly one thousand different parameter settings were
evaluated on the benchmark dataset. The medial-axis algo-
rithm and the topological thinning approach achieve similar
results, but the topological thinning algorithm is an order of



Figure 6. Here we show two more typical success and failure cases for the edge generation strategy. On the left we see a split neuronal
process where both skeletons have endpoints with vectors pointing towards their wrongly split neighbor. On the right is an example of a
failure case where the segment receives a trivial skeleton with a single endpoint. Since the skeleton is not expressive of the segment shape
we have no corresponding vector and this pair of split segments do not receive an edge.

magnitudes faster (4.9 seconds versus 39.8 seconds on the
volume downsampled to 80 nm in each dimension). The
TEASER algorithm is the slowest with a running time of
306 seconds on that same volume.

We generate the endpoint vectors in the following way.
Consider an endpoint with one neighbor. That neighbor
joint is the parent of the endpoint. From the neighbor, we
can find the grandparent of the endpoint (i.e., the neighbor
of the joint that is not the endpoint). With one more iter-
ation, we find the great-grandparent of an endpoint. The
vector between the endpoint and its great-grandparent be-
comes the endpoint vector used to estimate the direction of
the skeleton at endpoint termination.

4. Edge Generation

Figure 5 shows the effect on the number of true split er-
rors identified and the number of total edges as a function of
tedge—the maximal allowable distance between a skeleton
endpoint and the other neighboring volumes. We consider
a wide range of possible distances ranging from 50 nm to
800 nm on four training datasets. Figure 5, left, shows the
number of edges corresponding to split errors as a function
of tedge. The number increases quickly until around 300 nm
before increasing more gradually until 800 nm. We do not
consider distances farther than 800 nm since we found the
remaining missing edges are where the algorithm itself can-
not find them (paper, Fig. 7, right; supplemental Fig. 6,
right). The dotted line shows the location of 95% recall
from the tedge = 800 nm results. Our proposed method
uses a value of 500 nm since that is roughly at the 95% re-
call location.

As we can see from Fig. 5, right, the number of edges in
our graph increases greatly for every increase in distance
until around 400 nm where the increase becomes more
gradual. For that graph, the baseline is determined from the
adjacency matrix. A distance of 500 nm has approximately
12% fewer total edges than using tedge = 800 nm.

Figure 6 shows an additional success and failure case of
the proposed edge generation strategy. On the left, we see
a neuronal process incorrectly segmented into two. The cir-
cled region shows that each segment has a nearby endpoint
with a vector pointing towards the incorrectly split neigh-

bor. On the right, we see a failure case where the small seg-
ment receives a singleton skeleton which is not expressive
of the overall shape. This occurs on a spine where most of
the spine is correctly merged with the dendrite and just the
top end of the spine is segmented. Since there are no neigh-
boring skeleton endpoints, these two neighboring segments
do not receive an edge.

5. Edge Weights

There are two components to determining the weights
for each edge in the graph. First, we need to generate prob-
abilities that two segments belong to the same neuronal pro-
cess. Second, we need to transform these probabilities into
weights for edges.

Edge CNN. The edge CNN which determines if two large
segments belong to the same neuron has the same general
structure of the node CNN (Fig. 3). There are three VGG-
style convolution blocks [1] with convolutions of size (3,
3, 3) followed by a max-pooling operation (anisotropic for
the first two blocks and isotropic for the third). All weights
have Xavier initializations [3] and each activation is leaky
ReLU with α = 0.001 [4].

We consider a series of architectures, cubic regions, and
initial conditions for the edge CNN and choose the one with
best validation loss (Table 2). We consider three different
input sizes, three different diameters for the cubic region-
of-interest (ROI), and finetune a network on the node CNN
and train one from scratch. Amazingly, the node CNN pro-
duces reasonable results for the new input, with accuracies
of 96.3%, 96.6%, and 94.4% on the two PNI testing and
one Kasthuri testing datasets. The best validation accuracy
has a ROI diameter of 1200 nm and an input size of (52, 52,
18) voxels. As before, the cubic region is extracted from
the input segmentation and upsampled and downsampled
as needed to fill the input channels for the network.

From Probabilities to Weights. After generating a proba-
bility that two nearby segments belong to the same neuron
we need to transform the probability into a weight. As dis-
cussed in the main paper, we use the following equation to
transform the probabilities into edge weights [5]:



800nm Cubic Regions of Interest
Input Size Training Accuracy Validation Accuracy Testing Accuracy

(3, 52, 52, 18) 0.9736 0.9543 0.9576
(3, 52, 52, 18) 0.9750 0.9541 0.9582
(3, 60, 60, 20) 0.9722 0.9586 0.9598
(3, 60, 60, 20) 0.9771 0.9601 0.9626
(3, 68, 68, 22) 0.9740 0.9565 0.9587
(3, 68, 68, 22) 0.9784 0.9611 0.9633

1200nm Cubic Regions of Interest
Input Size Training Accuracy Validation Accuracy Testing Accuracy

(3, 52, 52, 18) 0.9761 0.9637 0.9638
(3, 52, 52, 18) 0.9679 0.9553 0.9552
(3, 60, 60, 20) 0.9706 0.9543 0.9546
(3, 60, 60, 20) 0.9703 0.9540 0.9549
(3, 68, 68, 22) 0.9694 0.9544 0.9543
(3, 68, 68, 22) 0.9763 0.9618 0.9629

1600nm Cubic Regions of Interest
Input Size Training Accuracy Validation Accuracy Testing Accuracy

(3, 52, 52, 18) 0.9597 0.9476 0.9501
(3, 52, 52, 18) 0.9516 0.9377 0.9388
(3, 60, 60, 20) 0.9643 0.9511 0.9526
(3, 60, 60, 20) 0.9589 0.9447 0.9454
(3, 68, 68, 22) 0.9566 0.9363 0.9367
(3, 68, 68, 22) 0.9630 0.9482 0.9476

Table 2. We decide upon our final edge generation network after looking at eighteen different network configurations. We vary the input
size among three options, consider three different cubic ROI diameters, and train both from scratch and finetuning with the node network.
The finetuned results are in the light gray rows. The best validation results occur with a cubic region of 1200 nm in diameter and an input
size of (52, 52, 18).

Figure 7. We consider a wide range of possible β values and see how each affects the total variation of information score. A β value of
0.95 creates the biggest reduction in variation of information on three validation datasets.

we = log
pe

1− pe
+ log

1− β

β
(1)

Figure 7 shows the equation as a function of pe and β.
β is a tunable parameter that encourages over- or under-
segmentation. Based on the validation data we use β =

0.95 (Fig. 8). We find that this β value creates the largest
reduction in variation of information on three PNI valida-
tion datasets.



Figure 8. This function converts probabilities between 0 and 1
to edge weights. β is a tunable parameter that encourages over-
or under-segmentation. Based on the results on three validation
datasets we set β = 0.95.

References
[1] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-
lutional nets. arXiv preprint arXiv:1405.3531, 2014.

[2] K. Dmitriev, T. Parag, B. Matejek, A. Kaufman, and H. Pfis-
ter. Efficient correction for em connectomics with skele-
tal representation. In British Machine Vision Conference
(BMVC), 2018.

[3] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings
of the Thirteenth International Conference on Artificial In-
telligence and Statistics, pages 249–256, 2010.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international con-
ference on computer vision, pages 1026–1034, 2015.

[5] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox,
and B. Andres. Efficient decomposition of image and mesh
graphs by lifted multicuts. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1751–1759,
2015.

[6] T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building
skeleton models via 3-d medial surface axis thinning algo-
rithms. CVGIP: Graphical Models and Image Processing,
56(6):462–478, 1994.

[7] J. Munkres. Algorithms for the assignment and transporta-
tion problems. Journal of the society for industrial and ap-
plied mathematics, 5(1):32–38, 1957.

[8] K. Palágyi. A sequential 3d curve-thinning algorithm based
on isthmuses. In International Symposium on Visual Com-
puting, pages 406–415. Springer, 2014.

[9] K. Palágyi and A. Kuba. A 3d 6-subiteration thinning algo-
rithm for extracting medial lines. Pattern Recognition Let-
ters, 19(7):613–627, 1998.

[10] K. Palágyi, G. Németh, and P. Kardos. Topology preserving
parallel 3d thinning algorithms. In Digital Geometry Algo-
rithms, pages 165–188. Springer, 2012.

[11] M. Sato, I. Bitter, M. A. Bender, A. E. Kaufman, and
M. Nakajima. Teasar: Tree-structure extraction algorithm
for accurate and robust skeletons. In Computer Graphics and
Applications, 2000. Proceedings. The Eighth Pacific Confer-
ence on, pages 281–449. IEEE, 2000.

[12] T. Zhao, D. Olbris, Y. Yu, and S. M. Plaza. Neutu: Software
for collaborative, large-scale, segmentation-based connec-
tome reconstruction. Frontiers in Neural Circuits, 12:101,
2018.

[13] T. Zhao and S. M. Plaza. Automatic neuron type identifica-
tion by neurite localization in the drosophila medulla. arXiv
preprint arXiv:1409.1892, 2014.


