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Abstract. Many vision problems, such as object recognition and image
synthesis, are greatly impacted by deformation of objects. In this paper,
we develop a deformation model based on Lie algebraic analysis. This
work aims to provide a generative model that explicitly decouples defor-
mation from appearance, which is fundamentally different from the prior
work that focuses on deformation-resilient features or metrics. Specifi-
cally, the deformation group for each object can be characterized by a set
of Lie algebraic basis. Such basis for different objects are related via par-
allel transport. Exploiting the parallel transport relations, we formulate
an optimization problem, and derive an algorithm that jointly estimates
the deformation basis for a class of objects, given a set of images re-
sulted from the action of the deformations. We test the proposed model
empirically on both character recognition and face synthesis.

1 Introduction

The changes in shapes of objects, often referred to as deformations, are widely
observed in computer vision data. In many problems, such as object recogni-
tion, the performance can be greatly influenced by deformations. Whereas past
decades have seen tremendous efforts devoted to developing features and clas-
sifiers that are resilient to shape variations, the modeling of deformations has
not been extensively explored. In this paper, we focus on modeling deforma-
tions, aiming to develop a method that can decouple deformation from object
appearance.

We provide a brief review of existing approaches to deformation analysis in
next section. Careful examination of these approaches suggests that they are lim-
ited in several aspects: (1) Manifold-based methods [1, 2] are popular in image
modeling. Such methods, though partly capturing shape variations, are usually
not very effective in modeling deformations. The key issue here is the lack of a
mechanism that can decouple the effects of deformations and other factors that
contribute to the variations of appearance. (2) The methods for deformation-
resilient metrics [3, 4] aim to suppress the influence of deformation on discrim-
inative performance, which again does not offer an explicit deformation model.
(3) Other work that explicitly takes deformations into consideration [5–7] has a
narrow focus on individual local tangent spaces, neglecting the relations between
them. As we will show, there are significant dependencies between the different
tangent spaces of the deformation manifolds, which, if appropriately exploited,
contribute greatly to learning a model of deformation.
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In this paper, we propose a new approach to deformation modeling, where
each observed image is considered to be generated by deforming an object tem-
plate. In typical images, the deformation of an object usually exhibit some regu-
lar patterns. This observation leads to the belief that deformations of an object
can be approximated by a low-dimensional Lie group. In general, a Lie group
is uniquely associated with a vector space, called the Lie algebra, which can be
characterized by a set of bases. Intuitively, each base vector in this space can
be considered as a base deformation pattern, and any deformation in the group
can be expressed as a linear combination of these bases with the Lie algebraic
characterization. Generally, a different Lie algebra is associated with a different
object template. For object templates that represent different poses of an object,
the associated Lie algebras are related to each other via the parallel transport
property. Specifically, the Lie algebra for one object template is a transported
version of the one for others. The fact that parallel transport is covariant with
geometric transformation ensures the consistency of this relation.

Consequently, with the Lie algebraic characterization, the problem of learning
deformations reduce to the one of estimating the deformation bases for different
object templates. Here, we formulate an optimization problem for estimating
these bases from a given set of observed images. In this formulation, two levels
of relations are exploited:

1. Observed images are closed to the deformation orbits, i.e. the manifold is
comprised of all deformed versions of the templates.

2. The bases associated with different templates are constrained by the parallel
transport relations.

The use of the first relation, which explicitly incorporates deformation into the
generative process of an image, clearly sets this work apart from the large amount
of prior work (e.g. those on image manifold learning) that directly model the
image space. Additionally, the use of the parallel transport relation further dis-
tinguishes the proposed approach from the methods which focus on local neigh-
borhoods only.

The remainder of this paper is organized as follows. Section 3 reviews exist-
ing theoretical results on deformations. The emphasis is particularly placed on
the Lie algebraic characterization and parallel transport. Section 4 formulates
the optimization algorithm for estimating the deformation model from observed
images. Empirical results are presented in section 5, where we compare the pro-
posed method with related methods on character recognition and synthesis, as
well as face reconstruction. Discussion of the method and results is provided in
section 6.

2 Related Work

We first briefly review previous work on deformations, which roughly fall into
two categories. The first category of methods focuses on estimating global affine
transformation. Frey and Jojic [8–10] proposes a mixture model, where the space
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of affine transforms is discretized, and an indicator is used to choose a specific
transform in generating each image. Miller et. al [11] proposed a nonparametric
probabilistic model, which estimates the global affine transforms by gradually
aligning the images, using a gradient descent method referred to as “congealing”.

The second category takes into account non-rigid deformations that can lead
to changes in shapes. Cootes et. al [12, 13] proposed the active appearance model
for object alignment, where the deformation is represented via the displacement
of pre-specified control points. In addition, approaches by directly matching local
descriptors are also widely used. Belongie et al. [3] developed a direct matching
method using local shape context based on statistics of edges. Keyser et al. [4]
developed an Image Distortion Model (IDM) [4], which pursues a dense match of
local patches between two images as a representation of the deformation. Though
simple, this method leads to substantial improvement on character recognition,
providing significant evidence as to the important role of local deformations in
object recognition. The pioneering work by Tenenbaum etal [1] and Roweis and
Saul [2] initiated a large amount of work that directly models the image manifold
via embeddings it into local low-dimensional spaces.

While deformation information is made use of in building object metrics in
the work mentioned above, these methods do not establish an explicit model of
deformations. Recently, new models have been proposed to address this issue.
Simard et al. [5] considered the manifold of deformations, approximating it via
local tangent spaces. In this work, the basis of these tangent spaces are hand-
crafted, with some apparent deformation patterns taken into account (e.g. ro-
tation and changes of thickness). However, some subtle variations of shapes are
difficult to capture via manually devised patterns. Another drawback of this
method lies in the introduction of tangent spaces for all training samples, incur-
ring unnecessary computational costs in both training and testing phases when
the samples are dense. Hastie and Simard [6, 7] improve upon this method by
grouping nearby samples into clusters and deriving the tangent basis via learning.
However, learning is performed independently for each tangent space, utilizing
only the samples within a local neighborhood. This makes it potentially difficult
to obtain reliable estimations.

3 The Theory of Deformation

Generally, the shape and size of an non-rigid object can change over time. Such
a change is often referred to as a deformation, which is ubiquitous in vision
problems. In this paper, we focus on the two-dimensional image space, where a
deformation can be formalized as a diffeomorphic transform on the image plane.

3.1 Lie Group and Lie Algebra

Deformations typically observed in vision problems are a subset of all diffeo-
morphic transforms, which we assume constitute a Lie group of dimension K. A
Lie group G is a finite-dimensional manifold with an algebraic group structure,
meaning that it has the following properties:
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Fig. 1. This figure illustrates the Lie algebraic characterization of deformation groups.
Here, starting from an object template, a deformed image can be generated following
a velocity field, which can be expressed as a linear combination of some basic pat-
terns (captured by the Lie algebraic basis). The basis associated with different object
templates are related by parallel transport.

1. The identity transform is in G.
2. If T1 and T2 are both in G, then the composition T1 ◦ T2 is also in G.
3. For each transform T ∈ G, the inverse transform T−1 also exists in G.

The Lie group G is associated with a Lie algebra g, a vector space of dimension
K. Each vector V ∈ g is a velocity field and corresponds uniquely to a transform
T ∈ G via the exponentiation mapping as below

T = exp(V ). (1)

Here, V is called the Lie algebraic representation of T .
The relations between a Lie group G and its associated Lie algebra g can be

described through the construction of a continuous transformation process. Let
V ∈ g, then for every t > 0, Tt = exp(tV ) is a transform. Hence, the function
below defines a trajectory on the image plane.

x(t) = Ttx0 = exp(tV )x0. (2)

Intuitively, this trajectory can be generated through a continuous transformation
process described as follows. Consider a particle starting from x0. If the particle
travels across the image plane, passing through each location x(t) with velocity
V (x(t)), the resultant trajectory is then given by

x(t) = x0 +

∫ t

τ=0

V (x(τ))dτ. (3)

This provides a detailed characterization of the trajectory defined in Eq.(2),
namely exp(tV )x0. Therefore, the transform exp(tV ) can be understood as an
operation that sends each point to move for time t, following the velocity field V .
Equivalently, the trajectory is characterized by the differential equation below

dx(t)

dt
= V (x(t)). (4)
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Given a basis of g, denoted by B = (B1, . . . , BK), each Lie algebraic vector V ∈ g

can be expressed as a linear combination as V =
∑K
k=1 α

kBk. As illustrated by
Figure 1, each base vector of g reflects a basic deformation pattern, and all
deformations in G are combinations of such base patterns. The Lie algebraic
characterization provides a representation, where such combinations can be done
via linear operations, great simplifying the modeling and estimation.

3.2 The Action on Images

A deformation T ∈ G can act on an image by moving the locations of its pixels.
Let I be an image. Applying T to I results in an deformed image T ◦ I, given by

(T ◦ I)(x) = I(T−1x). (5)

This means that the pixel value of T ◦ I at x equals that of I at T−1x. Let
V ∈ g. Applying a continuous transform process exp(tV ) to the image I yields
a continuous sequence of images, as

It(x) = (exp(tV ) ◦ I)(x) = I(exp(−tV )x). (6)

Taking the derivative w.r.t. t, we get

dIt(x)

dt

∣∣∣∣
t=0

= −V (x)T∇I(x) , (V ◦ I)(x). (7)

Here, V ◦ I denotes the action of V on I, which produces a scalar map, whose
value at x equals the negated inner product between the velocity V (x) and the
image gradient ∇I(x). Clearly, the action of V is a linear operation on I.

Given a basis B, we can write V in form of a linear combination as V =∑K
k=1 α

kBk. Consequently, we can rewrite Eq.(7) into

dIt(x)

dt

∣∣∣∣
t=0

=

K∑
k=1

αk(Bk ◦ I)(x). (8)

This equation establishes the linear isomorphism between the Lie algebraic rep-
resentation and the image changes due to deformation. Specifically, the infinites-
imal changes generated by a deformation V =

∑K
k=1 α

kBk can be expressed as
a linear combination of the “base changes” – those generated by the base defor-
mations – with the same set of coefficients α1, . . . , αK .

3.3 Parallel Transport

In general, a deformation group is associated with a specific object, which can
not be directly applied to a different object (e.g. a transformed version of the
object). However, one can adapt a deformation group via the parallel transport
of the associated Lie algebra, enabling its application to different objects.
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Fig. 2. This figure shows the two-level formulation of the proposed optimization formu-
lation. At the first level, each center image (depicted by blue circles) are connected to
all its neighbors (red circles) within the same cluster, and at the second level, different
centers are connected via parallel transport constraints.

Consider an object being deformed, which are observed from two different
views. The point at x from the first view is transformed to x′ = Tx from the
second view. Suppose this point has velocity v at t = 0 from the first view, then
what is the velocity of the corresponding point, i.e. Tx, from the second view?
The derivation below shows the answer:

v′ := lim
δt→0

T (x + vδt)− T (x)

δt
= JT (x)v. (9)

Here, JT (x) is the Jacobian matrix of T at x. Here v′ is called the parallel
transport of v w.r.t. the transform T . The parallel transport can be applied to
an entire velocity field V , resulting in a new velocity field T • V , given by

(T • V )(Tx) = JT (x)V (x). (10)

The parallel transports are covariant with the inducing transforms, meaning
that they satisfy two properties below: (1) the parallel transport induced by an
identity transform in itself is an identity, and (2) the parallel transport induced
by a composition of two transforms equals the composition of the transports
respectively induced, as (T2T1) • V = T2 • (T1 • V ).

4 Model Estimation Algorithm

In this section, we formulate an optimization problem to estimate the deforma-
tion groups for a specific class of objects, given a set of images, and thereon
derive an algorithm that jointly solves the basis of the deformation groups and
the Lie algebraic coefficients for the training samples.

4.1 Two-Level Formulation

Given a set of n images, we first group them into m clusters, using K-medoid,
where each cluster has a center image. The number of clusters m is chosen



Learning Deformations with Parallel Transport 7

via cross validation, such that all samples within a cluster are close enough
to the corresponding center. Suppose the i-th cluster contains ni samples. For
this cluster, we use Ii,0 to denote the center image of this, and Ii,j (with j =
1, . . . , ni) to the j-th non-center image. Here, we consider each center image as
the representation of the canonical shape of an object, and other images in the
same cluster as generated by deforming the center image.

As discussed in previous section, a deformation group can be character-
ized by a Lie algebra. With the Lie algebraic characterization the problem of
learning the deformation groups reduces to the one of estimating the Lie alge-
braic basis for each cluster. Here, we denote the basis for the i-th cluster by
Bi = (Bi,1, . . . , Bi,K). To estimate these basis, we formulate an optimization
problem, of which the objective function comprises two levels of terms, as shown
in Figure 2.

Within-cluster Level. Applying the deformation group characterized by the
Lie algebraic basis Bi to the image Ii,0 yields a K-dimensional manifold com-
prised of all the deformed images, denoted by G(Bi) ◦ Ii,0, as

G(Bi) ◦ Ii,0 , {exp(V ) ◦ Ii,0 : V ∈ g(Bi)}. (11)

Here, g(Bi) denotes the Lie algebraic space spanned by Bi. With the assumption
that Ii,j is generated by deforming Ii,0, we expect that the Ii,j is close to G(Bi)◦
Ii,0. Particularly, the distance from Ii,j to G(Bi) ◦ Ii,0 is given by

dist(Ii,j , G(Bi) ◦ Ii,0) = min
α

∥∥∥∥∥Ii,j − exp

(
K∑
k=1

αkBi,k

)
◦ Ii,0

∥∥∥∥∥ . (12)

When the deformed image Ii,j is close to the center Ii,0, the coefficients are
small. Consequently, by Eq.(8), we can approximately write

exp

(
K∑
k=1

αkBi,k

)
◦ Ii,0 ' Ii,0 +

K∑
k=1

αk(Bi,k ◦ Ii,0). (13)

As a result, we have

dist(Ii,j , G(Bi) ◦ Ii,0)2 ' min
α

∥∥∥∥∥(Ii,j − Ii,0)−
K∑
k=1

αk(Bi,k ◦ Ii,0)

∥∥∥∥∥
2

= min
α

∑
x∈D

(
(Ii,j(x)− Ii,0(x)) +

K∑
k=1

αkBi,k(x)T∇Ii,0(x)

)2

.

(14)

Here, D is the set of all observable pixel locations. For convenience, we define

Qij(Bi,αi,j) =

∥∥∥∥∥(Ii,j − Ii,0)−
K∑
k=1

αki,j(Bi,k ◦ Ii,0)

∥∥∥∥∥
2

. (15)
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Note that Qij is quadratic w.r.t. αi,j . Hence, the optimal coefficients that yield
the minimum (approximate) distance can be readily solved, given Bi.

Inter-Cluster Level. The basis associated with different groups are related
to each other via parallel transport. Specifically, we establish a higher-level net-
work between cluster centers, where each center image is connected to several
neighboring centers, i.e. other centers that are not too far from it, such that the
optical flow between them can be reliably estimated.

For each pair of neighboring centers Ii,0 and Ii′,0, we estimate the dense cor-
respondence between them Tii′ and Ti′i, using an optical flow algorithm [14]. Ide-
ally, we would expect the basis Bi to be the transported version of Bi′ w.r.t. the
transform Ti′i = T−1ii′ , i.e. Bi,k = T−1ii′ •Bi′,k, and vice versa. As some errors may
arise in optical flow estimation, we use the quadratic term as follows to penalize
the deviation from this relation:

Hii′(Bi,Bi′) =

K∑
k=1

‖Bik − T−1ii′ •Bi′,k‖
2 (16)

Here, we have

‖Bik − T−1ii′ •Bi,k‖
2 =

∑
x∈D∩Tii′ (D)

‖Bik(x)− JTii′ (Tii′(x))Bi′k(Tii′(x))‖. (17)

Here, Tii′(x) is the location of the pixel on Ii′,0 that corresponds to the pixel at
x of Ii,0. In general, Tii′(x) does not yield integer coordinates. Under such cir-
cumstances, linear interpolation can be used to derive the values of JTii′ (Tii′(x))
and Bik(Tii′(x)). In addition, x /∈ Tii′(D) indicates that the pixel at x of Ii,0 is
transformed outside of the observable region, and thus the corresponding term
is not included.

Joint Formulation. Integrating the terms at both levels, we derive the joint
objective function as follows.

L(B) =

m∑
i=1

ni∑
j=1

min
α
Qij(Bi,α) + γ

m∑
i=1

∑
i′∈Ni

Hii′(Bi,B′i). (18)

Here, Ni is a set consisting of the indices of Ii,0’s neighboring centers, and
γ is a positive weight that controls the contribution of the parallel transport
constraints. To minimize this function, we introduce an auxiliary function that
involves αi,j as arguments:

Laux(B,α) =

m∑
i=1

ni∑
j=1

Qij(Bi,αi,j) + γ

m∑
i=1

∑
i′∈Ni

Hii′(Bi,B′i). (19)

Obviously, Laux gives an upper bound of L and has

L(B) = min
α
Laux(B,α). (20)
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Consequently, L(B) can be optimized by alternating the updates of α and B:

α̂
(t)
i,j ← argmin

α
Qij(B(t−1)i ,α), (21)

B̂(t)i ← argmin
B

ni∑
j=1

Qij(B,α(t)
i,j ) + γ

∑
i′∈Ni

Hii′(Bi,Bi′). (22)

Note that the value of Laux(B,α) decreases with each updating step. Particu-
larly, the values of L and Laux become equal each time when α is updated to
the optima, i.e. L(B(t)) = Laux(B(t),α(t+1)).

4.2 Initialization

While Laux is convex w.r.t. B and α respectively, this is not a convex optimiza-
tion problem jointly. Hence, appropriate initialization is crucial as to obtaining
a reasonably good solution. Here, we describe a simple yet effective scheme to
initialize the the basis B.

We choose a particular cluster as the “standard cluster”, and compute the
optical flow [14] from the center of this standard cluster to the centers of other
clusters. With these optical flows, we can warp the images in other clusters
towards the standard one. For example, suppose I1,0 is selected as the standard,
and the optical flow from I1,0 to I2,0 is T12, then we warp each image in the
second cluster as I ′2,j = T−112 (I2,j) for j = 0, 1, . . . , n2. In this way, for each non-
standard cluster, we acquire a warped center as well as a set of warped images,
which are considered as generated by deforming the warped center.

At the initialization stage, we assume that the standard cluster and the
warped clusters share the same basis. To estimate this basis, we compute the
optical flow fields from the standard center to other images in the standard
cluster, and those from each warped center to other images in the corresponding
cluster. All these flow fields can be roughly considered as residing near the space
spanned by the shared basis. Therefore, the basis can be estimated by applying
principal component analysis (PCA) to these optical flow fields pooled together.
After the basis associated with the standard cluster is initialized, the bases for
other clusters can be readily obtained via parallel transport.

5 Experiments

Given the learned prototypes and deformation bases, we now have a generative
model for images. In this section, we apply our deformation model to two vision
tasks: (1) handwritten character recognition with training sets of varying sizes,
and (2) synthesis of digits and human faces. These experiments demonstrate the
utility of the proposed method on both discriminative and generative tasks.
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5.1 Handwritten Digit Recognition

On the popular MNIST [15] dataset, state-of-the-art algorithms can achieve
very high accuracy (with error rates less than 0.5%). However, these methods
usually rely on a large training set that densely cover all possible variations of
each character. Actually, in such a training set, one can find very close matches
to most testing samples. Consequently, a simple K-Nearest Neighbor (KNN)
method [4] with a properly chosen metric suffices to achieve a very low error rate.
However, a large data set is often cumbersome in practice, and methods relying
on dense data set are difficult to generalize. In this experiment, we compare
the proposed approach with several widely used algorithms in handwritten digit
recognition. As we will see, the results obtained on training sets of varying sizes
show that a structured deformation model can improve generalizability, making
it possible to maintain an comparably effective model with much smaller number
of prototypes. We compare four methods in the experiments:

1. L2: Find the nearest sample in terms of Euclidean distance in the feature
space, and classify the testing sample to the resultant sample’s class.

2. TD: Construct a tangent space for each training sample using a set of pre-
defined bases, and find the closest tangent spaces to a given testing sample.
This method is known as Tangent Distance [5].

3. IDM: This is a well-known method proposed by Keysers et al. [4], which
was the best-performing method on MNIST. The basic idea is to divide an
image into small patches, with each patch matched to the closest patch in a
training image. The patch is allowed to move within a small window during
the matching.

4. DL-PT: Use the proposed deformation model. With a learned model, a
tangent space is associated with each prototype. The bases for different pro-
totypes are different, but they are related through parallel transport.

In addition, two image features are considered: pixel intensities (pix) and Sobel
gradients (sob).

For each method, the training is performed on a training set of varying sizes,
with the purpose of testing their generalizability. In particular, for our deforma-
tion model, the prototypes are found by K-medoid clustering, while the asso-
ciated bases are jointly learned with the parallel transport relations taken into
account. Here, the dimension of each tangent space (i.e. the size of the basis) is
determined empirically (through PCA with 90% of the variation preserved in the
principal subspace). Note that our focus here is to test the effectiveness of the
deformation model instead of comparing classifiers. Hence, we use best-match
strategy for each method. However, one can adapt more powerful classifiers,
such as Support Vector Machine (SVM) and Convolutional Networks to further
improve the recognition accuracy.

Figure 3 shows that when the training set is small, all methods make a
considerable amount of errors, and the error rates decrease as the training set
grows. We can see that with a structured deformation model, the error rate
yielded by the proposed method clearly drops faster than that by other methods.
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This is partly ascribed to the fact that statistical strength is shared among local
models via parallel transport constraints.

In the second experiment, we vary both the number of prototypes and the
number of deformation basis to investigate their influence in classification per-
formance. In Figure 4, each colored curve corresponds to the error rate for a
given number of prototypes and the x-axis of each point on the curve represents
the number of deformation basis selected for each digit. As expected, increas-
ing the number of local components (i.e. a prototype together with its tangent
space) and the tangent space dimension generally leads to better classification
performance. In addition, we notice that the performance becomes stable as the
number of local components increases beyond a threshold (about 500), which is
clearly much smaller than the size of the entire training set.

5.2 Image Synthesis

While many image synthesis experiments are designed to demonstrate super
resolution results which are appealing from a human perceptual standpoint, our
primary purpose is different. We instead wish to show that the learned basis,
which is shared across the manifold, are meaningful from a geometric perspective.
Digit synthesis. Given the digit manifold learned from MNIST dataset, we
synthesize new images of digits by generating samples from a randomly selected
local component with random Lie algebraic coefficients. In particular, given a
coefficient vector, a sample can be generated through integration along a geodesic
on the learned manifold.

The top row of Figure 5 shows the sampled prototype of each digit in the
first column and synthesized new digit images in the rest of each row. One can
see that the synthesized images reflect local variations which the global affine
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Fig. 5. Synthesized digits from the learned digit deformation manifold. The first digit
in the row is the prototype; the rest are locally deformed from the prototype with a
random coefficients of the learned basis

transforms are not able to explain. For example, for digit "2", we can see that
there are some basis related to the size of the lower left circle of the digit.
For comparison, we plot the synthesis results using Tangent Distance (TD) [5]
(whose bases are pre-defined rather than being learned) in the middle row and
that using IDM (averaging over the randomly shifted patches of the image)
in the bottom row. Note that TD makes a combination of rigid transformation,
hyperbolic deformations and intensity deformations to the prototype, while IDM
only changes the detail of the prototype.

Face synthesis. In addition, we learn a face manifold using the face dataset
of Brendan Frey, containing around 2, 000 grayscale images of size 20 × 28 in
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Fig. 6. Comparison of reconstruction performance on face synthesis.
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different expressions and angles of view. For this experiment, we first learn the
commonly shared basis to construct the manifold from 1, 000 sampled images.
Then, for a separate set of randomly sampled 500 testing images, we try to see
how close they can be projected onto the manifold. We tested three different al-
gorithms for reconstruction: nearest training image in Euclidean metric, closest
projection onto tangent spaces and closest projection onto our connected defor-
mation manifold with shared basis. Again, we test our results with a varying
number of prototypes. Figure 6 shows that, in terms of both Euclidean distance
and PSNR ratio, the reconstruction from the manifold with a learned shared
basis is consistently better than those learned independently from training ex-
amples. Note that the images are small and many reconstruction errors are not
obviously perceivable. Consequently, we feel that a quantitative evaluation is
more appropriate than showing the reconstructed faces.

6 Conclusion

We have presented a new method for manifold learning over images. The method
is distinct from previous approaches in that the model explicitly incorporates a
local Lie algebraic representation of deformations combined with a consistency
relation derived from the parallel transport property. While previous methods
consider local tangent spaces parameterized by a deformation basis, the methods
of which we are aware utilize a hand crafted basis in contrast to the presented
method which learns the basis. This process was enabled by exploiting the paral-
lel transport property which imposes geometric consistency across local tangent
spaces and effectively leverages the full training set (rather than local clusters)
for learning properties of the deformation manifold. An efficient coordinate de-
scent algorithm was presented along with a suggested initialization procedure.
Empirical results demonstrating the utility of the methodology were presnted
for hand written character recognition and synthesis as well as human face re-
construction.
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