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ABSTRACT

Large-scale electron microscopy (EM) has enabled the reconstruction of brain connectomes at the
synaptic level by serially scanning over massive areas of sample sections. The acquired big EM data
sets raise the great challenge of image mosaicking at high accuracy. Currently, it simply follows the
conventional algorithms designed for natural images, which are usually composed of only a few tiles,
using a single type of keypoint feature that would sacrifice speed for stronger performance. Even so,
in the process of stitching hundreds of thousands of tiles for large EM data, errors are still inevitable
and diverse. Moreover, there has not yet been an appropriate metric to quantitatively evaluate the
stitching of biomedical EM images. Here we propose a two-stage error detection method to improve
the EM image mosaicking. It firstly uses point-based error detection in combination with a hybrid
feature framework to expedite the stitching computation while maintaining high accuracy. Following
is the second detection of unresolved errors with a newly designed metric of EM stitched image quality
assessment (EMSIQA). The novel detection-based mosaicking pipeline is tested on large EM data sets

and proven to be more effective and as accurate when compared with existing methods.

1. Introduction

The reconstruction of neural circuits through the imag-
ing of serial ultra-thin sections of brain tissues at nanometer-
range resolution with 2D large-scale electron microscopy
(EM), employing serial sectioning techniques such as serial
section scanning electron microscopy (ssSSEM), has emerged
as a critical and effective method for connectomic studies [1,
2, 3, 4]. The mosaicking of a substantial number of imaging
tiles within the region of interest (ROI) into a cohesive 2D
EM image is indispensable due to the inherent limitations of
the size of the field of view (mfov).

The mosaicking task of EM images for connectomic
studies encounters the challenge of balancing high speed and
high precision. The inherently high resolution of EM imag-
ing results in substantial amounts of data, imposing stringent
requirements on stitching speed. Moreover, this substantial
amounts of data exacerbates the already demanding accu-
racy requirements imposed by downstream alignment and
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segmentation tasks [5]. In contrast to generic nature images,
the parallax and distortion inherent in EM images are often
mitigated by opting for a smaller tile size. However, this
strategic decision amplifies the number of tiles and conse-
quently escalates the computational burden for stitching. To
mitigate this computational load, it is customary to reduce
the overlap area, yet this approach engenders heightened
challenges in the mosaicking process.

In brief, natural image stitching puts the emphasis on
minimizing local geometric misalignment, improving tran-
sition smoothness, and hiding the seam between parallax
images [6, 7, 8,9, 10, 11, 12, 13]. In contrast, the mosaicking
of large-scale EM images can be satisfied with nearly rigid
transformation but instead greatly suffer from long computa-
tion time and inevitable errors through the enormous amount
of data.

The process of mosaicking electron microscopy (EM)
images involves several steps, including feature extraction,
matching, outlier rejection, and global optimization to de-
rive the necessary transformations [14] (Fig. 1). A key
consideration in this process is the trade-off between accu-
racy and speed in feature extraction. While faster methods
like ORB [15] prioritize speed over accuracy, more accu-
rate techniques like SIFT [16] require longer computation
times [17]. However, the lack of standardized evaluations for
EM image mosaicking makes it challenging to quantitatively
compare feature performance. As a result, researchers often
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Figure 1: Overview of the image mosaicking pipeline with the proposed two-stage error detection. Upper, the conventional EM
image mosaicking workflow. Lower, the two-stage error detection that is added. In the Y/N insets, the red (Y) and green (N) line
segments indicate whether a stitching error exists on the border of two tiles.

rely on qualitative assessments, which can be laborious and
subjective. Despite the preference for accuracy, errors in mo-
saicking remain challenging to detect, especially given the
large volume of data and time required for analysis. Efforts to
enhance keypoint features and transformation models have
been ongoing, but no method has yet achieved an optimal
balance between speed and accuracy. In response to this
challenge, we propose a novel approach that focuses on error
detection and iterative feature refinement.

We designed a two-stage error detection pipeline. In
the first stage, correspondences derived from a hybrid fea-
ture framework undergo scrutiny from a point-based error
detection method prior to image rendering. Subsequently,
the detected errors are utilized to iteratively prioritize a
feature with heightened accuracy for handling the flawed
tiles. Then, in the second stage, the mosaicked images un-
dergo evaluation using a novel EM stitched image quality
assessment (EMSIQA) metric to identify any remaining
errors. In essence, the approach involves leveraging fast
features to maximize computational speed, while simulta-
neously employing error detection methods and exploring
accuracy-focused features to ensure precision. We tested the
detection-based biological EM image mosaicking pipeline
on large data sets of mouse brain from multibeam SEM and
mouse glioblastoma from single-beam SEM, and demon-
strated high accuracy and significantly shortened processing
time.

2. Related work

For image mosaicking, current pipelines first match key
points for each pair of overlapped images, estimate the
transformation for each image tile with a global optimization
approach [14, 18], render the mosaicked image, and assess

the stitched image quality. Below we review the compu-
tational costly keypoint matching step and the final image
quality assessment step.

2.1. Keypoint Matching for Image Stitching

Image keypoints. One major time-consuming step in
the image stitching pipeline is keypoint detection. Since the
scale-invariant feature transform (SIFT) [16] was proposed
by Lowe et al in 1999 and widely applied in many com-
puter vision tasks like stitching, registration, and template
matching, many handcrafted features have been proposed
to improve in either accuracy or speed. Speeded-Up Robust
Features (SURF) [19] was developed as a faster replacement
of SIFT by replacing the Difference of Gaussian (DoG) with
Hessian matrix and squeezing the dimensions of descriptors
to speed up the matching. Oriented FAST and Rotated
BRIEF (ORB) [15] further accelerated the extraction, reach-
ing up to a 100-fold speed increase of SIFT in theory, but its
robustness is not as good as SIFT and SURF. AKAZE [20],
proposed as the accelerated version of KAZE [21], adds FED
(Fast Explicit Diffusion) to the pyramid framework and the
utilization of non-linear scale space makes it more stable
than SIFT or SURF. BRISK [22] was proposed to achieve
a high-quality performance albeit at a dramatically lower
computational cost. In recent years, learning-based features
emerged to take advantage of GPU parallel computation.
Learned Invariant Feature Transform (LIFT) [12] used con-
volutional neural networks (CNNs) to implement detector,
orientation estimator, and descriptor. However, a CNN-like
network is only weakly invariant to the rotation, which limits
its application in many tasks.

Matching outlier rejection. Sparse feature extraction
algorithms pick out the points that are distinctive and robust
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Figure 2: The first-stage point-based error detection and the hybrid feature framework. Given P overlapped tile pairs with shape
[W x H], a feature extraction algorithm with the highest speed, which is ORB in our experiment, is first used to generate the
tentative correspondences. Assisted by modified learning-based global-perception outlier rejection (GPOR) [23] and RANSAC [24],
potential errors in correspondences are detected. Then, slower but more accurate extraction and matching algorithms, such as
SIFT and SURF, are applied to erroneous tile pairs to improve the stitching quality.

to transformation and then give each key point a high-
dimensional descriptor. By calculating the distance of de-
scriptors in an image pair, each key point in one image will
be linked to the closest point in the other, and we refer to this
point pair as a correspondence. Therefore, the challenge is to
find the correct geometric transformation out of massive er-
roneous correspondences (outliers). RANSAC [24] is an old
but effective algorithm to reject outliers [25]. By iteratively
selecting random points, the fitted model is applied to check
how many points are potentially inliers until a model that
can include the most correspondences is achieved. MLE-
SAC [26], a generalization of RANSAC, maximizes the like-
lihood rather than just the number of inliers. PROSAC [27]
optimizes the speed from the perspective of sampling. Also,
deep learning is introduced to make up for the ignorance
of global geometric information. Choy et al. [28] further
explored the outlier rejection in high-dimensional space
powered by the Minkowski engine [29]. Yi et al. [23] drew
lessons from the processing of disordered points in Point-
Net [30], and proposed a context normalization module to
extract the inliers with global perception, which we call as
Global-Perception Outlier Rejection (GPOR).

2.2. Stitched Image Quality Assessment (SIQA)
Different from other computer vision tasks like classifi-
cation or segmentation, it is almost impossible to manually
label the ground truth of the stitching of two naturally
acquired images. Thus, researchers tend to compare the
structure of interest in the overlapped region. One simple
way to assess the stitching is to adopt classical image quality
metrics, such as peak signal-to-noise ratio (PSNR) [31],
structural similarity (SSIM) [32], and normalized cross-
correlation (NCC) [33]. However, these methods are not
designed for the evaluation of image stitching and ignore
the different importance of various types of errors between
the stitched images. Qureshi er al. [34] quantified the
geometric and photometric qualities separately of a stitched
image and named the geometric part HFI-SSIM. Yang et
al. [35] fused a perceptual geometric error metric and a
local structure-guided metric into one. Tian et al. [36] took

consideration of six different stitching distortion types and
trained an assessment model by SVR [37]. Furthermore,
Ullah [38] took advantage of mask R-CNN [39] to build a
three-fold deep learning-based no-reference stitched image
quality assessment called DLNR-SIQA.

3. Methods

3.1. Framework Overview

Our error detection framework has two stages (Fig. 1).
In the first stage, we adapt and integrate the previously
proposed GPOR into a hybrid feature selection framework
aimed at striking a harmonious equilibrium between speed
and accuracy. In the second stage, we introduce and imple-
ment a novel metric that more comprehensively incorporates
the image characteristics specific to biomedical EM data.
This metric enables the identification of any persisting errors
and facilitates an accurate assessment of the mosaicking
quality.

3.2. Stage 1: Key point Matches Error Detection

Among image features, SIFT is known to have high-
quality matches with costly computation while ORB is faster
to compute with a significant drop in match quality. It is
a straightforward idea to first try ORB and later try SIFT
if the ORB match quality is not sufficient. However, it is
challenging to design a reliable metric for keypoint matches
to know when to switch to a different image feature.

Given a chosen feature and an image pair to stitch, we can
have two statistics: M,,, the number of all matches between
the image pair and M;, the number of inlier matches chosen
by RANSAC. A commonly used binary heuristic variable,
n, to determine if the matches are good or not can be defined
by

M;
n=(M; >9,-)ﬂ(ﬁn > 6,), M
where 6; demands big enough number of inlier matches
and 6, demands high enough ratio of inlier matches. When
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the matches are not good which means the chosen feature
failed, the value of # will be False. Intuitively, when 6; is
small, there are not enough matches to robustly estimate the
transformation matrix; when 6,. is small, the image may have
ambiguous structures leading to non-consensus matches.

However, for EM images, the initial keypoint matches
are noisy, which makes the 6, unstable for the selection.

We thus designed a combined approach to detect poten-
tial stitching errors before global optimization and render-
ing, by filtering the output inliers from the GPOR with an
additional RANSAC and calculating the acceptance ratio.

In this work, we adopt a learning-based outlier rejection
algorithm proposed by Yi et al [23]. This algorithm involves
considering image pairs (I, I /) and their corresponding es-
sential matrices E to extract the set of correspondences X
associated with E. The challenge of outlier rejection can be
addressed by designing a deep network that encodes a map
f parameterized by ®, which

W = fo(X), E = g(X, W). (€3]

The W = [Q,...,Qy] is the output of the network fg,
where Q; € [0, 1] represents the score assigned to cor-
respondence x;, and Q; = 1 indicates x; as an inlier.
The function g filters correspondences X based on W and
computes the essential matrix E from the filtered X.

In order to individually consider each correspondence
within the broader global context, allowing for the encoding
of camera motion, the feature map is normalized based on its
distribution following each perceptron. The network utilized
in this study is a 12-layer ResNet, with each layer comprising
two consecutive blocks comprising a Perceptron featuring
128 neurons sharing weights for every correspondence, a
Context Normalization layer, a Batch Normalization layer,
and a Rectified Linear Unit (ReLU).

The training of this network employs a hybrid loss func-
tion comprising a classification loss to reject outliers and a
regression loss to predict the essential matrix. Since there
is no requirement to estimate the transformation matrix for
each image pair, we solely utilize the classification loss
function.

P
L@) =) L®,x,) ©)
k=1

where @ are the network parameters and x; is the set of
putative correspondences for image pair k. Given a set of
N putative correspondences X, and their respective labels
Vi = [y}c, ,yllj] where y;‘c € 0,1, and y;‘c = 1 denotes that
the i-th correspondence is an inlier, our outlier classification
error is

£@.x) = 7L H O S}, @
where 0;'( is the linear output of the last layer for the i-th
correspondence in training pair k, .S is the logistic function
used in conjunction with the binary cross entropy H, and
y]i is the per-label weight to balance positive and negative
examples.

As shown in Fig. 2, this network accepts the input
correspondences with shape [Batch, 4, K] and outputs the
likelihood ranging in (0, 1) for every correspondence shaped
as [Batch, 1, K] to estimate the probability to be an inlier.
With such keypoint match error removal, we empirically
find the common image feature selection method (Eqn. 1)
becomes more effective due to a more stable inlier match
ratio M;/M,,.

3.3. Stage 2: Stitched Image Error Detection

In the multi-step processing of biomedical EM images,
image mosaicking is an upstream step to assist later three-
dimensional registration and segmentation. The primary
goal is to make every biological structure well-stitched at
the pixel level. In comparison, the visualization factors like
the photometric quality have less effect on the downstream
analysis. Furthermore, since the structures in 2D images are
used to reconstruct the 3D volume, any trick to blandish the
eyes such as multi-band blending [40] should not be applied
to avoid hidden errors. Thus, the principles of evaluating
the stitching result should (1) pay the most attention to
cellular structures, (2) ignore the photometric quality and
(3) be prior to fusion or blending. Given the stitched left
and right image pair I, and Ig, we design a new SIQA
score that is customized for EM images with the downstream
segmentation task in mind, termed EMSIQA, for which we
take the factors below into consideration.
(a) Deformation magnitude. Traditional SIQA methods are
sensitive to the change of image appearances, e.g., out-
of-focus blur and brightness, between the pair of images,
even if there is no geometric change (Fig. 3a-b). To focus
on the geometric matching quality for the stitched image
pair, the proposed EMSIQA method computes the average
deformation field magnitude, defined as

1
E i 15.9) = Xl + 0 5)

ieQ

where N is the number of pixels, u and v denote the horizon-
tal and vertical values of the optical flow between the pair of
input images, and Q represents the region of valid pixels.
(b) Border structure. As illustrated in Fig. 3 c-d, due to the
imaging noise, there is non-zero deformation on cell texture,
which can overwhelm the deformation field magnitude on
the cell and organelle borders that are critical for the down-
stream segmentation task. Thus, we designed the EMSIQA
to focus on the important border features. As the labeling
of precise boundaries of cellular compartments leads to the
challenging segmentation task, we herein use a fast and
simple method that is very effective in scenarios with low-
precision requirements. OTSU threshold segmentation [42]
maximizes the contrast between foreground and background
to find the most appropriate segmentation threshold. We
added a median filter to decrease the noise and were able
to obtain a binary mask that coarsely outlined the cellular
structures. Thus, we choose the region of deformation field
Qp for image I as

Hongyu Ge et al.: Preprint submitted to Elsevier

Page 4 of 13



Two-stage Error Detection to Improve Electron Microscopy Image Mosaicking

@

Appearance

s ©
T
Q
o
4
c
R=]
£
1]
2 d 7
2
D
= 7
s (@
%)
I
p=}
3]
=
%)
U] 4
imagel image2 \ ‘fused image

|:| displacement visualization :l value of EMSIQA

Figure 3: Typical scenarios in EM image mosaicking. (a) One
image has an out-of-focus blur simulated by a Gaussian blur.
(b) The pair is different only in brightness. (c) Local distortion
on the boundary membranes of cellular compartments, no
global translation. (d) Local distortion in the info-less cytosolic
area inside the cellular compartments, no global translation.
(e) Thick membranes, 2-pixel vertical and horizontal global
translation. (f) Thin membranes, 2-pixel vertical and horizontal
global translation.

Qp = Median-Filter(OTSU(I 5)) (6)

(c) Border matching. Although geometric error can quanti-
tatively describe the displacement in pixels, it cannot rep-
resent the mismatch of biological structures relative to their
scales which are extensively diverse among different cellular
compartments. In other words, the same pixel displacement
in big and small cellular structures can cause different effects
on the registration and segmentation that follows (Fig. 3 e-
f). Inspired by segmentation algorithms, we adopted Dice
index [43] to quantify the matching of the border structures
of the pair of images:

FlowNet2 OTSU and Median Filter

ko, Y ¥ , s
5 A 5
PSR
®
> g v v JIEp
."-"J: nxu%"
Epow (U, 15,0, .
[E/mw(u./g.n)=ﬁ; u3+u,’] [EMSIQA:%A';@ [mcs(m,n,):z ;?:‘}‘)?”)]

/A

Figure 4: EMSIQA computation. EMSIQA is a novel metric
to evaluate electron microscopy stitching. Guided by optical
flows (via FlowNet2 [41]) and boundaries (via OTSU segmen-
tation [42]), it measures the geometric error normalized to the
biological structure.

where the greater the similarity between the image pairs
1, and Ip, the higher the resulting value. Similarly, when
there is a consistent pixel displacement, indicating equal
divergence between I, and I, any displacement observed
in smaller cellular structures e.g., thin membranes will exert
a stronger influence, resulting in a diminished unaffected
region and consequently a reduced Dice index. In other
words, the larger cellular structures have a substantial (4 N
Qp) under similar displacement conditions, which results in
a higher Dice index:

25 (Q,NnQp) 2 @)
Q+Q, Dis
A B 1+QAOQB

DiS=QAﬂQ_B+Q_AﬁQB (9)

As shown in Fig. 4, for each image pair to be stitched
together, we crop out the overlapping area from the two
images, respectively, calculate the average geometric error
in pixels of all cellular structures, and then divide it by a
penalty item that represents the structure matching of the
two overlapping areas. We call this metric EMSIQA (EM
stitched image quality assessment) and formulate it as:

2% (QyNQpR)
DICE(Q,,Qp) = ——24 "8 (7 E 10145 I, 2p)
Q+Q EMSIQA(I 4, Ig) = ————— 10
AR QAUa-18) = icE@,. ap) 1o
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(@ 5.767 mm (1,441,792 px)

1.835 mm (458,752 px)

(b)

Figure 5: CC50K dataset gallery. (a) CC50k dataset, a complete 2D cross-section of adult mouse corpus callosum consisting of
458,752 % 1,441,792 pixels. (b) The 7-mFoV sub-dataset CC427. (c) Four 1-mFoV subsets named CC61-1 to 4, each containing

61 tiles.

where 1 ,/(x,y) = I,(x + u, y + v) is the warping of I, by
the optical flow between the pair of images.

3.4. Implementation Details

We tested the pre-trained FlowNet2! [41] on image pairs
with known displacement and found it sufficiently precise
and robust. Thus, when computing the optical flow for
EMSIQA evaluation, we directly adopted the pre-trained
model of FlowNet2 [41]. To organize the large-scale EM
data, we adopted the data structure used in TrakEM2 [44]
and the workflow of rh—aligntar2 [45] with modifications.
We implemented the GPOR referencing Yi et al 3 [23]
using PyTorch. To train the model, we set Adam as the
optimizer with a learning rate equal to 0.00005 and set the
batch size to 32. We only preserved the classification loss
since the weighted 8-point algorithm does not match the
workflow of multiple-image stitching. Other arguments were
kept unchanged to Yi et al. [23]. When extracting features,
we set the number of ORB features to be close to the average
value of those extracted by SIFT or SURF. Commonly, when
the image is low-textured, the number of key points extracted
by SIFT or SURF will drastically decrease while ORB will
keep constant or close to the number we pre-set. In the error
detection step, when setting the thresholds of the acceptance
ratio and the number of inliers, we took into consideration
the image size and the type of features. In our experiment,
we set the number of ORB features for one tile to be 50000
and regard a pair as a stitching error when the acceptance
ratio is lower than 0.9 or the inliers number is below 40 or

! https://github.com/NVIDIA/flownet2-pytorch
thtps ://github.com/Rhoana/rh_aligner
3https://github.com/vcg-uvic/learned—correspondence—release

20 for ORB and SIFT, respectively by experience. For the
execution order of the features, we set ORB as the first choice
to perform the simplest yet fastest key point extraction. SIFT,
as the second option, will take over where ORB fails and
more accurate correspondences are required. In some very
low-texture regions, SURF will serve as the last choice to
extract more feature points than SIFT.

In our experiment, we tested all algorithms on a work-
station equipped with Intel Core i9-9920X and one Nvidia
RTX?2080Ti (11GB memory). Due to the different schedul-
ing strategies when using OpenCV [46], we used schedtool*
on the Linux platform and ran the tests on a single processor
to ensure the fairness. While processing the complete large-
scale CC50k dataset, we used a multiprocessing module
and PyTorch multiprocessing module to accelerate the tradi-
tional keypoint extraction methods and deep learning-based
outlier rejection methods, respectively.

4. Results

4.1. Datasets

The presented real datasets were approved by the Ex-
perimental Animal Ethics Committee of Suzhou Institute of
Biomedical Engineering and Technology, Chinese Academy
of Sciences. The dataset CC50K was collected from mouse
corpus callosum on September 25th, 2018(NO.2018-A30).
The ST793 dataset was collected from the mouse striatum
on September 22nd, 2022. The GBM9 dataset was obtained
from mouse glioblastoma on November 18th, 2020. We
used a 61-beam scanning electron microscope (Zeiss Multi-
SEM 505) for acquiring CC50K and ST793 images, capable

4https ://github.com/freequaos/schedtool
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0.264mm(66,148px)

(b)ST91
(b)

0.252mm(62,976px)

(d)ST30

(d

Figure 6: ST793 dataset gallery. (a) The ST793 dataset comprises a segment of the adult mouse striatum, featuring 17 mFovs
with dimensions of 62,976 X 66, 148 pixels. (b) The sub-dataset ST91 comprises a complete mFov with 61 tiles and 30 tiles from
surrounding mFovs, exhibiting overlap with the entire mFov. (c) The complete mFov consists of 61 tiles. (d) The 24 boundary
tiles from the complete mFov and 30 tiles from surrounding mFovs.

(b) stitching result(proposed)

(a) imgs before stitching

Figure 7: GBM9 dataset. Part of a section of adult mouse
glioblastoma cell with 9 tiles, 3,000 x 3,000 pixels per tile.
(a) the images before stitching. (b) the stitching result of
proposed.

of simultaneously capturing multiple tiles. The images of
GBM9 were acquired using a single-beam scanning electron
microscope (Zeiss GeminiSEM 300).

Besides, we generated two sets of synthetic data for the
training and evaluation of GPOR. The dataset for evaluating
GPOR will be detailed and introduced in sec 4.2. Without the
metadata like camera poses in natural images, it is difficult
to make a real dataset for training when processing the EM
images because we do not have the ground truth of L, ;
according to the epipolar distance. We take advantage of the
large area of EM images to configure a method to generate
synthetic datasets that can simulate the real training data
with ground truth. First, we choose a set of large 2D EM im-
ages and randomly select a pixel, used as the left-top corner
of training image la. Then, an affine matrix is generated to
transform the training image 1a to the corresponding area of
training image 1b’. This area is usually not a rectangle so we
need to solve another matrix to transform the whole large EM

image in order to obtain a rectangle training image 1b of the
same dimension with training image la. Please refer to the
appendix A for more details about generating the synthetic
datasets.

CC-train. To get the best performance on the real data,
we cropped image pairs from the below CC50k and made
a synthetic dataset for training. The overlap rate is set to be
between 0.03 and 0.1 and we added an extra mask on every
image because the later features matching step only works
on an approximately overlapping rectangle. This training
set contains 9226 pairs of images and each pair contains
extracted 1000 correspondences.

CC50k. In the dataset acquired by the 61-beam SEM,
one multifield of view (mFoV) consists of 61 tiles shaped
in [2724, 3128], each scanned by an individual electron
beam. We chose a complete cross-section of mouse corpus
callosum containing 826 mFoVs and 50,386 tiles to test our
framework (Fig. 5 (a)). The physical resolution is 4 nm/px
so the about 10 mm? area contains over six hundred billion
pixels. The overlap rate between tiles was set to be 3% when
acquiring the images. This dataset is the superset of CC427
and CC61.

C(C427. To promote testing efficiency, we cropped out
7 adjacent mFoVs with 427 tiles from CC50k (Fig. 5 (b)).
This 4-billion-pixel subset is used to test the performance of
different features on a large-scale EM dataset.

CC61. To evaluate the generalization performance of
the proposed method, we also cropped out 4 subsets, each
containing one mFoV with 61 tiles (Fig. 5 (c)). These mFoVs
come from different areas of the CC50k, with different
cellular structures or image contrasts.

ST793. In the dataset acquired by the 61-beam SEM, a
multifield of view (mFoV) comprises 61 tiles, each shaped in
[3376, 3876], with individual electron beams scanning each
tile(Fig. 6 (a)). We selected a mouse striatum section with
13 mFovs and 793 tiles. The physical resolution is 4 nm/px,
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Results on CC427
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Figure 8: Stitching performance (measured in EMSIQA) and
running time tested on the CC427 dataset. The proposed
hybrid feature framework achieved an optimized balance be-
tween performance and speed. Note that we constrained the
computing resource to one processor to ensure fairness. SURF
ran slower than SIFT in the OpenCV implementation, which
is contrary to the expectation.

Table 1
EMSIQA results and running time on CC427 dataset, a real-
world dataset containing 427 tiles.

Method | Al Topl0%| Top20%| Top50%) | Timel
SIFT [16] 1.289 0.325 0.437 0.747 28'25"
SURF [19] 1.588 0.327 0.444 0.783 72'34"
ORB [15] 13.372 0.565 0.922 2.541 7'36"
AKAZE [20] 9.040 0.478 0.807 1.988 12'48"
BRISK [22] 4.441 0.386 0.546 1.083 64'36"
ORB+GP. 1.972 0.339 0.464 0.830 10'14"
Hyb. w/o. GP. | 17.421 0.756 1.305 3.673 9'22"
Proposed 1.523 0.289 0.388 0.715 10'41"

with an 8% overlap between mFovs and 1 um between tiles
during image acquisition. This dataset serves as the superset
of STI1.

ST91 In SEM image stitching, tile pairs within the same
mFov and between different mFovs yield distinct results.
Typically, stitching errors occur between tiles inter-mFovs.
So We choose a complete mFov at the midpoint of the
section and tiles from surrounding mFovs that overlap with
this entire mFov (Fig. 6 (b)). In this sub-dataset, there are 91
tiles.

GBM9 This 3x3 tiles mouse glioblastoma dataset is
consist of 9 tiles (Fig. 7).

4.2. Point-based Error Detection: EM- Feature
Assisted by error detection, we can first use the faster
feature to obtain the preliminary inliers, and then optimize
the potential wrong pairs using a slower feature with stronger
performance. As shown in Table 1, we recorded the mean
EMSIQA of CC427 dataset to test the overall performance,
and Top 10%, Top 20%, and Top 50% mean EMSIQA to
evaluate how well the top stitched pairs perform. As depicted
in Table 4, we documented the mean EMSIQA for the ST91
dataset, evaluating the stitching results within mFov and

Table 2

A Comparison of RANSAC [24] and GPOR on EMPAIR3000,
a synthetic dataset including 1k pairs in the overlap rate range
of 20%-30%, 30%-40%, and 40%-50%, respectively

20%-30% 30%-40% 40%-50%

RAN. GPOR RAN. GPOR RAN. GPOR
Inliers 13.5 42.0 61.0 86.1 139.6  144.6
Accuracy 0.966 0.998 0974 0.999 0.996 0.998
Precision  0.477 0.958 0.886 0.984 0.995 0.990
Recall 0.198 0.998 0.649 0.997 0.963 0.999

between mFovs (Intra and Inter mean EMSIQA). Similarly,
Table 5 displays the mean EMSIQA for the GBMO dataset.

GPOR vs. RANSAC. In order to evaluate the perfor-
mance of GPOR on image pairs with different overlap rates,
we made a synthetic dataset containing 3k pairs of four
different overlap rate ranges, 1k for each range (Table 2). We
constrained the displacement of four corner points within 50
pixels to simulate the nearly rigid transformation. For each
image, the dimension is 1024 x 1024, and we set 1k feature
points for SIFT. We found 40.6, 85.1, and 143.3 inliers on
average in the four subsets, respectively. As shown in Ta-
ble 2, on EMPair3000 which includes different overlap rates,
GPOR outperforms RANSAC in most cases. Because of
the imbalance of inliers and outliers (i.e., outliers are much
more than inliers), the disparity of accuracy is insignificant
compared with precision and recall. Especially in the groups
with lower than 30% overlapping area, GPOR has a great
advantage. Considering all recall values are larger than 0.99,
we believe that in the case of nearly rigid transformation and
small overlapping areas, which apply to most multibeam EM
images, GPOR significantly outperforms RANSAC.

Proposed vs. Single Feature. In previous workflow,
people tend to select SIFT to guarantee higher stitching
precision at the cost of speed. Our experiment result from
CC427 shows that sometimes accuracy and speed are mu-
tually compatible goals, shown in Fig. 8. By detecting the
errors from ORB with GPOR and RANSAC, and replacing
it with SIFT, the Top10%, Top20%, and Top50% averaging
EMSIQA all exceed the result of pure SIFT or SURF and the
mean EMSIQA of all tile pairs is very close to them (Table
1). Meanwhile, under the same computation resource, the
running time including extracting and matching features, is
cut down to nearly one-third of SIFT.

Proposed vs. without Hybrid Features. GPOR can
only work when there are enough good correspondences,
which is not guaranteed when handling sparse key points.
The comparison of Proposed and ORB+GPOR in Table 1
indicates that pure ORB assisted by GPOR cannot achieve
the performance of ORB hybrid with SIFT.

Proposed vs. Error Detection without GPOR. We also
explored the case of simply using either the filter rate or
the number of accepted correspondences via RANSAC as
the error detection criterion, instead of applying GPOR. The
results are listed in the row of "Hyb. w/o GPOR’ in Table 1,
indicating they do not work well.
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Figure 9: Visualization of the feature characteristics on the CC61 dataset. Upper: speed-accuracy trade-off. Lower: spatial

visualization of the hybrid feature adopted by the framework on different tile pairs. The color of the short line connecting the
center of two tiles represents the final chosen features. Blue, yellow, and green denote ORB, SIFT, and SURF, respectively.

Generalization performance. To assess the general-
ization performance, our method performs well on CC61,
ST91, and GBMY, as demonstrated in Table 1, Table 4, and
Table 5. CC61 has 4 sets of 61-tile EM images with varied
cellular structures and contrasts. ST91 includes an mFov
with 61 tiles and 30 tiles from surrounding mFovs. GBM9
is a glioblastoma dataset with 9 tiles acquired by a single-
beam scanning electron microscope. As described in section
4.1, CC61-1 is relatively easy because of the abundant and
uniform axon bundles, thus providing sufficient keypoint
features to extract. The cellular structures have different
scales in CC61-2. CC61-3 covers many cytons with low
texture. CC61-4 has a low contrast compared to the other
regions. We generate plots for time, mean EMSIQA, and the
distribution of hybrid features in Fig. 9. These illustrate that
our method demonstrates excellent performance across these
datasets, with notable improvement on more challenging
data.

4.3. Image-based Error Detection: EMSIQA

We designed three typical scenarios, including six im-
age pairs as shown in Fig. 3 to compare EMSIQA with
other assessments. The Appearance represents the blurred
images by focus inaccuracy and the images of different
signal intensities. The Distortion Location shows the image
deformation that occurred on the boundary membranes of
biological structures or in the information-less areas inside
the cellular compartments. And the Structure Scale discerns
the thick and thin cellular membrane structures. For (a)
and (b), the values are very close to zero, which indicates
that the proposed metric is nearly invariant to the blur and
brightness change. In (c) and (d), we added distortion on
boundary membranes and cytosolic areas, respectively. It
can clearly discriminate the influence of the distortion when
it is distributed on different structures. (e) is an image with a

thick cellular structure while (f) shows a thin one. Although
they have the same pixel-wise displacement, the mismatch-
ing of cellular structure is more serious when it is thin and
thus the value is larger, proving that EMSIQA is sensitive
to resolution-independent structure matching. As shown in
Table 3, PSNR is sensitive to the brightness change. SSIM
increases when the structure becomes thinner. NCC does
not clearly discriminate the effect of distortion on boundary
membranes or cytosolic areas. HFI-SSIM outputs obviously
unreasonable values when evaluating the thick and thin
structures. In conclusion, compared with classical IQAs and
HFI-SSIM designed for stitching, the proposed EMSIQA
gives more reasonable results under common scenarios in
EM image mosaicking.

4.4. Application on Ultra-large 2D Image

We applied the proposed framework on CC50k to test
the performance, speed, and robustness of our framework
dealing with ultra-large multi-tile EM images. Fig. 5 (a)
exhibits the overview of the stitched complete cross-section
of corpus callosum. As shown in Fig. 10 (a), the Top10%,
Top20%, and Top50% EMSIQA can achieve 0.337, 0.459,
and 0.829, respectively. Over 80% of the overlapping areas
have a value below 3. Fig. 10 (b) shows three stitching areas
in detail for every EMSIQA range. Fig. 10 (c) illustrates
the EMSIQA distribution among the whole section. In most
regions, the values are kept at a relevant low level like
the blue box, while in some areas lack texture, and the
performance is still not perfect, like the red box.
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Table 3

Comparison of EMSIQA and other assessments (PSNR [31], NCC [33], SSIM [32] and HFI-SSIM [34]) in the three scenarios

(6 image pairs) shown in Fig. 3. Ej(struc.) means the geometric error of the cellular structures and Eg;(whole) denotes the

geometric error of the whole image. The result shows that the proposed EMSIQA can better evaluate the stitching of EM images.
indicates where the metric can serve as a successful assessment, while x denotes not.

EMSIQA (Proposed)

PSNRT  NCCT SSIMT - HFI-SSIM? Overall| | Eg(struc.)}  Eg(whole)]  Mg1
Appearance X X X
Fig. 3 (a) blur 30.290 0.959 0.812 0.001 0.015 0.015 0.015 0.993
Fig. 3 (b) brightness change 11.873 1.000 0.751 0.999 0.034 0.033 0.035 0.991
Distortion Location X X X
Fig. 3 (c) boundary membranes | 15.793  0.856  0.687 0.377 2.001 1.784 0.954 0.687
Fig. 3 (d) cytosolic areas 16.826  0.890  0.661 0.700 0.653 0.624 1.086 0.955
Structure Scale X X
Fig. 3 (e) thick structure 14347 0.865 0.252 0.004 3.094 2.792 2.789 0.902
Fig. 3 (f) thin structure 12.662 0.711  0.270 0.004 3.501 2.806 2.793 0.781

5. Conclusion and Limitation

Contribution. To address the challenge in large-scale
EM image mosaicking, we proposed a two-stage error de-
tection method to assess the mosaicking in and after the pro-
cessing. The first stage combines the learning-based GPOR
and the classical RANSAC to examine the key point matches
and detect the potential stitching errors before the time-
consuming global optimization and image rendering. We
proposed a hybrid feature framework, where the first stage
is point-based error detection, to comprehensively optimize
stitching speed and accuracy. The second stage takes advan-
tage of a newly designed measurement of EM stitched image
quality assessment (EMSIQA) to detect unsolved errors and
to comprehensively evaluate the stitching result. Experiment
results showed that our framework can significantly reduce
the computation time compared with existing single-feature
workflows, and meanwhile attain excellent stitching quality.
The application of our framework to ultra-large multi-tile
EM images of the adult mouse’s striatum, glioblastoma, and
corpus callosum showcased outstanding performance and
robustness in mosaicking extensive and diverse EM images.

Limitations. The proposed hybrid feature framework
takes advantage of different key features and achieves an op-
timized balance between performance and speed. However,
naturally, it cannot surpass the upper limit of performance
of the chosen features. Given the extensibility of our frame-
work, more advanced features proposed in the future can be
added to the hybrid features to achieve further improvement.

In the experiment GPOR vs. RANSAC(Sec 4.2) using
synthetic dataset, the GPOR method adopted in this work
can reach a high speed using GPUs since the feature numbers
of all images are set to be equal at the data preparation stage.
However, the computation speed did not reach our expecta-
tion on the three real EM datasets because the number of
correspondences varies a lot in different tile pairs, which
means we can not concatenate them together into a batch
and compute them in parallel.

Besides, our framework is specially optimized for the
images acquired by the multibeam SEM with small tile size,
of which the non-linear distortion is negligible in most cases
for stitching. Thus we here did not discuss the distortion nor
apply our proposed scheme on deformed EM images where
elastic transformation is needed.
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Figure 10: Visualized EMSIQA score distribution and stitching result of CC50k. (a) The EMSIQA distribution is in ascending
order among 149666 overlapping areas and three cutoff point values. (b) The stitching results in different EMSIQA score ranges.
The final image in each row is the stitching result of the first two images. (c) The EMSIQA distribution across the whole CC50k

image, with two typical regions called out, which are mosaicked bad and well, respectively. A log function on the values.
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Appendix

A. Details of making the synthetic dataset

Cropping from a large image Supposing that the size of
the large image and cropped image are [H, W] and [h,w], re-

According to the location of image 1 in the large image, we
can get the global coordinates:

COO"

Pt, ©= =M. Ptlc;:;r’ +[disp_Xge, disp_y,., 017 (A3)
However, the parallelogram solved by the three points in the
global coordinate system cannot be directly cropped because
in most cases it is not a rectangle so we have to transform the
large image using the matrix:

caorl)

getAffme(Pt (A4)

MlargeZsmall dst 9

Then, cropping the transformed large image using M40 smais
into [h, w] can generate image 2.

spectively. We firstrandomly select a point [disp_x,,.., disp_y,..INormalization Inreal EM data, the dimensions of tiles are

as the left-top of image 1, then a random affine matrix M is

generated to represent the transformation between image 1

and image 2. We can formulate the coordinates of one point

in these two images’ coordinate systems as:
M- Pt =Pt >

Src

(A.1)

Next, we need to calculate Pt; ; in the large image’s
coordinate system. We can choose three corner points in
image 2: [0, O], [0, h], [w, O] as the anchors. Thus, their
coordinates in image 1 can be written as:

Pt — M . Pt

dst dst (A2)

not constant so the learning-based outlier rejection model
has to be trained under a normalized coordinate system. We
constrain the coordinates in the range of [-1, 1] following:

xhorm — ﬁ 1 norm _ 2& -1
1 ’ 1 h ’
“ : (A5)
norm_2x2_1 normzﬁ_l
2 w, 2 /’l2
Supposing that the affine matrix M is:
_( f11 f12 f13
M= < 21 f22 f23 (A-6)
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ble 4

EMSIQA results and running time on ST91 dataset, a real-
world dataset containing 91 tiles.

Ta

Method ‘ All} Intra%| Inter%| Timel ‘
SIFT [16] 3.28 3.18 3.568 39'43"
SURF [19] | 344  3.46 339 31'34"
ORB [15] 4258 4595  32.85 805"
AKAZE [20] | 24.01 30.02 6.67 13'43"
BRISK [22] 22.24 25.99 11.39 17'48"
Proposed | 431 4.27 4.41 15'43" |
ble 5

EMSIQA results and running time on GBM9 dataset, a real-
world dataset containing 9 tiles.

Method ‘ Alll  Best%| Worst%] Timel ‘
SIFT [16] 320  0.49 3.66 16"
SURF [19] |3.11 051 3.66 15"
ORB [15] 562  0.65 11.65 6"
AKAZE [20] | 3.40  0.59 4.15 11"
BRISK [22] | 327  0.47 3.84 14"
Proposed | 3.21 057 3.72 10" |

then the corresponding elements in normalized matrix M """
can be formulated as:

B.

0,01 = £11x %L
w2
[0,1]=f12><ﬂ
w2
[0,2]=f11><w—1+f12xﬂ+f13xi—1
w2 w2 w2
wl (A.7)
1,0] = f21 Xx —
[1,0] = f o
hl
1,1]= f22x —
[(1,11=f n
wl hl 2
1,2] = f21 Xx — 22X — 23x ——1
[L.21=7 h2+f h2+f h2

EMSIQA results and running time for the
ST91 and GBM?9 datasets

Here we present the results of datasets ST91 and GBM9

in Table 4 and Table 5.
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@®Balancing electron microscopy mosaicking speed and accuracy is
achievable.

@Integrating varied features aids in precise, efficient EM image stitching.

@®EM stitched image quality assessment ensures precise stitching evaluation.






